Announcement: WFIRST has been renamed. More Information >>

Frequently Asked Questions

What is WFIRST?

The Wide Field Infrared Survey Telescope (WFIRST) is a NASA space observatory currently in development. WFIRST was recommended as the top priority for the next decade of astronomy in the 2010 United States National Research Council Decadal Survey. In February 2016, WFIRST was approved for development and launch. WFIRST is designed to settle essential questions in the areas of dark energy, exoplanets, and astrophysics.

How big is WFIRST’s telescope?

The WFIRST telescope has a primary mirror that is 2.4 meters in diameter (7.9 feet), and is the same size as the Hubble Space Telescope's (HST) primary mirror. The mirror has the same sensitivity as Hubble’s primary mirror but will only be one fifth the weight, showcasing an advancement in telescope technology. WFIRST will have the sensitivity and resolution comparable to HST, but with a field of view 100 times larger, combining excellent image quality with survey power.

How many instruments will WFIRST have?

WFIRST will have two instruments, the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). The WFI provides wide field imaging and spectroscopy in support of dark energy, microlensing, and supernova surveys. The CGI provides high contrast imaging and spectroscopy for observations of exoplanets and debris disks. The WFI is a 288-megapixel multi-band near-infrared camera, providing a sharpness of images comparable to that achieved by the Hubble Space Telescope (HST) over a 0.28 square degree field of view, 100 times larger than that of HST. The Coronagraphic Instrument is a high-contrast, small field of view camera and spectrometer covering visible and near-infrared wavelengths using novel starlight-suppression technology.

What are the WFIRST science themes?

WFIRST will focus on dark energy, exoplanets, and a wide range of infrared astrophysics and planetary science topics. WFIRST surveys include a large area, high-latitude imaging and spectroscopic survey that enables high-precision cosmological measurements with weak lensing and galaxy clustering, a time-domain survey that enables discovery and light curve monitoring of thousands of Type Ia supernovae, a time-domain survey of the Galactic bulge that enables discovery of thousands of exoplanets at AU and larger separations via gravitational microlensing, and a General Observer (GO) program that will enable a wide range of studies in astrophysics and planetary science.

How will WFIRST look for dark matter, dark energy and exoplanets?

WFIRST will study dark matter and dark energy with several techniques. It will perform large surveys of galaxies and galaxy clusters to see the effects of dark matter and energy on their shapes and distributions in the universe. All told, more than a billion galaxies will be observed by WFIRST. It will also observe distant Type Ia supernovae to use them as tracers of dark matter and dark energy. WFIRST will provide a huge step forward in our understanding of dark matter and dark energy. WFIRST will also study exoplanets with two different techniques: microlensing and coronagraphy. The mission will stare at the a dense star region toward the direction of the center of our Milky Way galaxy to observe microlensing events. The coronagraph instrument will demonstrate new technologies for performing direct imaging of exoplanets and disks around nearby stars.

Have the science teams already been selected for the mission?

No. WFIRST solicited input from the science community for guidance in formulating the surveys, and a large team of scientists proposed to participation in a “Formulation Science Working Group”, or FSWG. The goals of the FSWG are to organize science investigation teams to investigate optimal designs and technical requirements for the surveys, and capabilities that will maximize the science return of the General Observer and archival programs. Detailed survey designs and time allocations will be decided much closer to launch, incorporating broad community input. The FSWG members have a 5-year term, and NASA anticipates a future competition for implementing and participating in WFIRST.

Will the WFIRST data have any proprietary time?

There will be no proprietary period for WFIRST data, and 100% of observing time will be competed.

What is the status of WFIRST?

WFIRST is currently in the Final Design and Fabrication phase (“Phase C”). NASA missions undergo various phases, as follows:

  • Phase A: Concept & Technology Development
  • Phase B: Preliminary Design and Technology Completion
  • Phase C: Final Design and Fabrication
  • Phase D: System Assembly, Integration and Test, and Launch
  • Phase E: Operations and Sustainment
  • Phase F: Closeout

When is WFIRST slated to launch?

Preparations are on track for a mid-2020s launch.

What institutions are involved in WFIRST?

The WFIRST mission is managed by NASA’s Goddard Space Flight Center with participation by the Jet Propulsion Laboratory, the Space Telescope Science Institute (STScI), the Infrared Processing and Analysis Center (IPAC), several industrial partners, and science team members from a large number of research institutions. The WFIRST Science Center functions are the joint responsibility of IPAC, STScI, and GSFC. The primary industrial partners are Ball Aerospace, Harris, and Teledyne Imaging Sensors.

What additional science will WFIRST enable?

In addition to the WFIRST survey programs to study dark energy and exoplanets, WFIRST will allow an enormous range of scientific investigations in astrophysics and planetary science. WFIRST will have a robust General Observer program that will enable the scientific community to study topics that include solar system objects, exoplanet transits, brown dwarfs and stellar remnants, stellar populations of the Milky Way and nearby galaxies, galaxy evolution, quasars, gravitational lenses, and the sources of reionization.

Who will launch the mission into space?

The WFIRST project is currently studying launch vehicle options. Launch vehicles are not typically selected until several years before launch.

What orbit will WFIRST be in?

WFIRST will operate from a Quasi-Halo orbit around the second Sun-Earth Lagrange point (L2).

What is the WFIRST mission lifetime?

Under current plans, WFIRST will have a primary mission lifetime of 5 years, and is being designed to support a 5 year extended mission (fuel is the only expendable).

Will WFIRST have a General Observer or Archival Researcher Program?

Yes. Under current plans, 25% of the 5-year prime mission is expected to be dedicated to the General Observer (GO) programs and 5% would be devoted to coronagraphic technology demonstration. The rest is devoted to surveys for microlensing, and dark energy measurements. These surveys should also yield data useful for general astrophysics to be done in archival mode. NASA intends to fund an Archival Researcher (AR) program to support full scientific exploitation of the WFIRST data sets. A larger fraction of time (likely 100%) of an extended mission would be operated in GO mode.

NASA logo
NASA Official: Jeffrey Kruk
Media Inquiries : Claire Andreoli
Web Site Issues: Jennifer Brill
Privacy Policy privacy