Kinematic Lensing

Developing a science case for the Roman Space Telescope

KL team - get involved!

Jiachuan Xu Xu et al. (in prep)

Pranjal RS

Xiao Fang

Hung-Jin Huang

Maggie Smith

Elisabeth Krause

Tim Eifler

Spencer Everett

Yu-Hsiu Huang

KL basics

<u>image</u>

rotation curve

Kinematic Lensing breaks the degeneracy between inclination and ellipticity

Effect of shear on kinematic observables

For technical details of the estimator please see Huff et al (2013) or Xu et al. (in prep)

KL effort - big picture projects overview

- Measurement and modeling pipeline goal first measurement on Keck/HST/KMOS data
 - Keck slit spectroscopy (largest sample, limited signal in slit data)
 - HST Grism spectroscopy (higher spatial resolution, lower spectral resolution)
 - KMOS Integral field data (smaller sample, high spatial/spectral resolution)
- Roman Space Telescope feasibility study and science forecasts
 - Model KL Roman galaxy sample, redshift distribution and shape noise
 - Simulated analyses of Roman core science cases and integration of KL into multi-probe
- Accurate simulations accounting for complexity of real systems from Illustris TNG

Modeling Kinematic Lensing

- As a proof of concept we need to test KL on realistic data
- The best data we have is from long slit spectroscopy (Keck/HST)
- We have built a forward model that utilises KL to infer the shear
- We test our model on realistic mock data that include effects such as sky emission, atmospheric transmission, PSF convolution, etc
- The methodology can then be extended to other types of data eg., grism data from Roman

2D Forward Model

- Image model
 - Use Galsim to model image
 - \circ n=1 inclined Sersić profile (r_{hl}, q_z, sin*i*)

• Spectrum model

- Model the slit as a 2D grid
- Apply coordinate transformations to account for the effects of shear, intrinsic galaxy position angle and inclination
- $\circ \quad \ \ \text{arc tan velocity field}$
- Tully-Fisher prior on maximum circular velcoity

Parameter	Description	Prior	
γ_+	Shear component	U(-0.7, 0.7)	
$\gamma_{ imes}$	Shear component	${\cal U}(-0.7,\ 0.7)$	
$r_{ m hl}^{ m image}$	Image half-light radius	$\mathcal{U}(0.15,5)$	
$r_{ m hl}^{ m spec}$	Spectrum half-light radius	$\mathcal{U}(0.15,5)$	
I_0	Central brightness	$\mathcal{U}(1,10^4)$	
$V_{ m circ}$	Maximum circular velocity	$\mathcal{N}(\log V_{\mathrm{TF}}, \sigma_{\mathrm{TF}})$	
r_0	Galaxy dynamic center	$\mathcal{U}(-2, 2)$	
$r_{\rm vscale}$	Velocity scale radius	$\mathcal{U}(0.1,10)$	
$\sin i$	Galaxy inclination angle	U(-1, 1)	
$ heta_{ m int}$	Intrinsic galaxy position angle	$\mathcal{U}(-\pi/2,\pi/2)$	

Results: 2D Forward Model

Shear Constraints vs. Galaxy Properties

Forecasting KL performance with Roman

- Defining the KL sample
 - Key sample parameters: number density and shape noise
- Likelihood modeling
- Forecast results:
 - Kinematic lensing v.s. standard weak lensing
 - Impact of systematics
 - Impact of narrow tomography

Defining the KL sample

• Scenarios Definition:

Obtained from COSMOS and CANDELS

Defining the KL sample: number density

- We also validate source galaxy number density via multiple methods:
 - EL-COSMOS Catalog (Saito et al. 2020):
 - Based on COSMOS2015 catalog
 - More physical emission line modeling
 - w/o grism spectra failure rate
 - Galacticus + CLOUDY (<u>Zhai et al. 2019</u>):
 - Based on semi-analytic models
 - w/o grism spectra failure rate
 - Roman AFTA 2015 (Spergel et al. 2015):
 - Based on luminosity function
 - Outdated grism response
 - w/ observation inefficiencies

Defining the KL sample: shape noise

- Toy model validation:
 - Data vector: (ϵ_1 , ϵ_2 , v_{major} , v_{minor} , M_{B}) Ο
 - For every item in a random ensemble, Ο derive maximum-likelihood shear estimate, and its variance σ_a^2 from Fisher matrix
 - Derive shape noise as ensemble std of Ο MLE shear estimates, weighted by σ_g^{-2} $\sigma_\epsilon \approx 0.035$ when $\sigma_v \approx 15 \, {\rm km \, s^{-1}}$
 - Ο
- Can Roman grism measure disk kinematics with $\sigma_v pprox 15\,{
 m km\,s^{-1}}$?

Can Roman grism measure disk kinematics?

• HST/WFC3-Grism (3x worse than the *Roman Space Telescope* Grism) recovers rotation velocities with a precision of $\sigma_v = 15 - 30 \, \mathrm{km \, s^{-1}}$

Outini & Copin (2020)

CosmoLike Likelihood/Cov Settings

- Observable: shear-shear power spectrum $C^{ij}_{\kappa\kappa}(\ell)$ (20 log bins from $30 \le \ell \le 4000$ Covariance matrix: Gaussian + non-Gaussian + super-sample covariance, $\overline{\Omega}_{\rm s} = 2000 \, {\rm deg}^2$ Cosmological parameters sampled: $\{\Omega_{\rm m}, \sigma_8, n_s, w_0, w_a, \Omega_b, h\}$
- •
- Systematics modeling

	Systematic Parameters		WL		KL
		Fiducial	Prior	Fiducial	Prior
Photo-z uncertainty (PZ)	$\Delta^i_{ m z,src}$	0.0	N(0, 2e-3)	0.0	N(0, 4e-4)
· · · · · · · · · · · · · · · · · · ·	$\sigma^i_{\rm z,src}$	0.01	N(0.01, 2e-3)	0.002	N(0.002, 4e-4)
Shear calibration bias (M)	m^{i}	0.0	N(0, 2e-3)	0.0	N(0, 4e-4)
	A _{IA}	5.92	N(5.92,3.0)	-	840
	$\beta_{\rm IA}$	1.1	N(1.1,1.2)	-	-
Intrinsic alignment (IA)	$\eta_{ m IA}$	-0.47	N(-0.47,3.8)	-	-
	$\eta_{\mathrm{IA}}^{\mathrm{high-z}}$	0.0	N(0.0,2.0)	<u> </u>	-
	Q_1	0.0	N(0.0,16.0)	0.0	N(0.0,16.0)
Baryon effects (BA)	Q_2	0.0	N(0.0,2.0)	0.0	N(0.0, 2.0)
	Q_3	0.0	N(0.0,0.8)	0.0	N(0.0,0.8)

Similar to the Roman Space Telescope x Rubin Observatory (Eifler et al. 2021)

Forecast results: WL v.s. KL

• Figure-of-Merit: 3.65x enhancement in $w_{\rm p} - w_a$ 1.70x enhancement in $\Omega_{\rm m} - S_8$

Forecast results: impact of systematics

 Photo-z and shear calibration uncertainties are comparable with baryon effects uncertainty

FoM	WL	$KL(N_{tomo} = 10)$			
	PZ+M+IA+BA	PZ+M+BA	PZ+M	no sys	
FoMwpwa	10.55	38.51	47.85	59.58	
$FoM_{\Omega_m S_8}$	5307	9017	11533	13543	

Forecast results: narrow tomography KL measurement

• Question: Is there more information when we have more narrow tomography bins?

Almost no...

Forecast results: narrow tomography KL measurement

- Question: Is there more information when we have more narrow tomography bins? No...
- Question: If dark energy evolves with time, does more information come from more bins?

Summary of forecasting KL performance with *Roman*

- The Roman Space Telescope is likely to measure disk kinematic of emission line galaxies with $\sigma_v \approx 15 \,\mathrm{km \, s^{-1}}$, which translates to a shape noise of $\sigma_\epsilon \approx 0.035$ Assuming overlapping HLIS and HLSS sample, the KL sample has $n_{\mathrm{gal}} = 4 \,\mathrm{arcmin}^{-2}$ with observational inefficiencies accounted.
- Considering shear-shear power spectrum only, KL can enhance the FoM on w_0-w_a by more than 2x, and the FoM on $\Omega_{
 m m}-S_8$ by $\sim70\%$
- We find more narrow tomography bins will not increase the FoM on $w_0 w_a$ even when assuming upper limits of currently allowed time-dependent dark energy as the true model
- We also derive shear estimator of KL in a pedagogical way in our paper.

Future works:

- Extensions to 3x2pt and 6x2pt
- Interface with grism simulation pipeline to improve realism
- Explore wide *Roman* HLS scenarios: wide single-band imaging + wide grism

Exploring astrophysical uncertainties in IllustrisTNG

current pipeline assumptions

- Intrinsically round disk
- Smooth sersic light profile
- Cylindrical symmetric rotation curve

on-going works

- TNG-mock pipeline
 Creating realistic galaxy mock images
 and spectra from hydro-sims
 -- Hung-Jin Huang, Maggie Smith
- Improving data analysis pipeline Increasing model complexity to account for hydro simulation-based kinematics -- Maggie Smith
- New project Exploring environmental dependence of TF-relation in TNG

-- Yu-Hsiu Huang

TNG mocks -- mock spectra data from TNG galaxy kinematics

TNG mocks -- mock spectra data from TNG galaxy kinematics

Realistic Intensity Profile Modeling - Spencer Everett

We can account for more realistic galaxy intensity profiles by using an arbitrary 2D basis, such as shapelets:

- Can guickly solve for MLE of basis coefficients given sampled g, theta int, etc.
- Flexible intensity profile modeling without cost of marginalizing directly in sampler

Nmax=12; 91 shapelets:

- Using a basis that has been *transformed* in an identical way as the data:
 - Use sampled projection + rotation + shear
 - Efficiently represents profile with less functions and up-weights profiles generated from inclined, disk-like galaxies

Discussion - Extensions to multi-probe

- 6x2 is relatively straightfwd since we can switch out the corresponding modules for the LSSTxSO with the WFIRST KL lensing routines.
- Clusters is same as above but switching WL -> KL routines in the WFIRST multi-probe paper
- Covariances for low shape noise values are likely hard
- kSZ needs to be implemented more cleanly in CosmoLike; this will require several hack days
- Very interesting to push KL to smaller scales, more narrow tomography bins, and optimizing this for non-std science cases (PCA dark energy, modified gravity, DM-DE interaction, etc)

Discussion - Measurement Considerations

- Environment dependence of the TF relation
- Complex Emission line morphology, especially as compared to stellar disk
- Shear-like modes arising from tidal fields (e.g., not strictly spin-2)
- Not clear that we've a full accounting of observational systematics for spectroscopic lensing: sampling, spectral response, etc.
- Are there other scaling relations accessible with the same data that could improve constraints?
- Can we use lensing as our cluster mass proxy, without an additional calibrator? (Rozo)

Discussion - Survey Strategy Study

- Question: What is the optimal survey strategy and implementation for WFIRST
- Some considerations:
 - Does KL benefit from 4 different bands or is a W-band survey preferable?
 - Given that we need overlapping spectroscopic info, we need to explore imaging+spectroscopy over the same area
 - How can we ensure that we get sufficiently high S/N spectra (deep survey, dither pattern, rotation of telescope) can this be implemented in the ETC? Hard, easy?
 - Deep vs wide... what is better?
 - How could this be implemented within a WFIRST survey HLS, GO?
 - Which strategies are useful to explore to make use of ground-space synergies? Which
 instruments from the ground can be used to get higher S/N spectra, e.g. for calibration (PFS,
 DESI+, dedicated Keck program,...)?

Wide variety of hard measurement problems in WL: What are the root causes?

Effect of shear on kinematic observables

For technical details of the estimator please see Huff et al (2013) or Xu et al. (in prep)

Covariance Matrix

Standard Covariance as in WFIRST WL multi-probe paper

Lower shape noise on the diagonal causes off-diagonal elements to be more important

Weak Lensing (1100 data points) Kinematic Lensing (1100 data points)

Smooth Angular Power Spectra

Summary

- The Roman Space Telescope is likely to measure disk kinematic of emission line galaxies with an accuracy of ~ tens of km/s, which translates to a shape noise of $\sigma_{\epsilon} \leq 0.05$
- Assuming overlapping HLIS and HLSS, the KL sample has $n_{\rm gal} = 8 \, {\rm arcmin}^{-2}$
- Considering shear-shear power spectrum only, KL can enhance the FoM on $w_0 w_d$ by more than 2x, and the FoM on $\Omega_{
 m m} S_8$ by $\sim 70\%$
- We find more narrow tomography bins will not increase the FoM on $w_0 w_a$, even when assuming upper limits of currently allowed time-dependent dark energy as the true model
- Future work:
 - Extension to 3x2pt and 6x2pt
 - Explore wide Roman HLS survey scenarios: wide single-band imaging + wide Grism?
 - Interface with the KL measurement simulation pipeline to further improve the accuracy of Roman Space Telescope KL forecasts