Cosmological Inference
Pipelines and Projects

HLS Team
Overview

1. Multi-probe inference
 a. Forecasting results - overview (Tim Eifler)
 b. Next Gen Pipeline - Cocoa (Vivian Miranda)
 c. 2D+3D (Elisabeth Krause)

2. Kinematic Lensing
 a. Concepts+Overview (Eric Huff)
 b. Measurement with Keck and HST (Pranjal Singh)
 c. KL with Roman Space Telescope (Jiachuan Xu)

3. Roman voids for cosmology (Alice Pisani)
Topic 1: Multi-probe Inference (Forecasting results)

- **Goals of the forecasting pipeline:** Study science return, aka quantify error budget as a function of
 a. science cases/parameterizations (dark energy, modified gravity, etc)
 b. multiple probes (weak lensing, clustering, clusters, cross-correlations)
 c. galaxy samples, redshift distributions, scales
 d. survey strategy
 e. systematics models and mitigation strategy
 f. statistical uncertainties and probe-correlations
 g. synergies with external datasets

- **Challenges:**
 a. Speed: This pipeline needs to run very often, increasingly so, the closer we get to the data
 b. Precision/accuracy: The most relevant ingredients need to be modeled precisely/accurately, but avoid fine-tuning irrelevant aspects
 c. Constant iteration and updating as a function of better understanding the error budget from upstream pipeline/mock development and from community wide knowledge
 d. User-friendliness, documentation
Some Results - Reference Survey

see Eifler, Miyatake, Krause, Heinrich, Miranda, Hirata, Xu, many others, MNRAS 2021

Single probe Analyses

Multi-probe analyses
Roman “wide survey” idea - Synergies with Rubin

This concept combines the Roman W-band with the 6 LSST bands for photo-z
Explore Roman W-band Wide Survey, 18000 deg^2

- 5 months: Roman can cover all of LSST’s area and obtain space quality shape measurements for 95% of the LSST Y10 gold sample
- 1 year: Same as above for all sky
- Interesting for many science cases beyond DE
- Disclaimer: W-band only survey is more easily affected by systematics
- Idea: Combine W-band survey with Roman multi-band photometry as in the reference survey
3x2 simulated analysis Roman+Rubin

Weak lensing and Galaxy Clustering (photo-z) only, no clusters, spec-z, SN, CMB

Includes 56 dims of systematics modeling:
- Shear calibration
- Galaxy bias
- photo-z
- IA
- Baryons

FoM (Roman wide + Rubin) = 2.4 x FoM (LSST only)
FoM (Roman wide + Rubin) = 5.5 x FoM (Roman Reference survey)

Disclaimer: The usual caveats to the FoM metric apply
Overview

1. Multi-probe inference
 a. Forecasting results - overview (Tim Eifler)
 b. Next Gen Pipeline - Cocoa (Vivian Miranda)
 c. 2D+3D (Elisabeth Krause)

2. Kinematic Lensing
 a. Concepts+Overview (Eric Huff)
 b. Measurement with Keck and HST (Pranjal Singh)
 c. KL with Roman Space Telescope (Jiachuan Xu)

3. Roman voids for cosmology (Alice Pisani)
Multi-probe Inference (Next Gen Pipeline)

Cocoa - Cobaya-CosmoLike Architecture

Address the previous challenges w/ conservative well-tested solutions

- Challenges:
 a. Speed:
 i. Cosmolike in C language (for speed).
 ii. Multithreading w/ MPI+OpenMP + Smart Caching of intermediate results.
 iii. Adopt Cobaya (based on state-of-the-art CosmoMC) for low overhead integration w/ other datasets + MCMC samplers that are well understood by the community.
 b. Precision/accuracy:
 i. Based on Cosmolike, well tested state-of-the-art framework (in C language) for weak lensing 2pt functions with many options for science modeling (continuous improvements based on ground-based collaborations)
 c. Userfriendliness, documentation
 i. Integration between C and Python for better user interface
 ii. Continuously building documentation on github
Multi-probe Inference (Next Gen Pipeline)

Cocoa - Cobaya-CosmoLike Architecture

Fast evaluation + Easy to use

Hybrid MPI/OpenMP - walkers on steroids

Total Evaluation - Boltzmann + Cosmolike

(DES-Y3 like analysis w/ complex syst modeling)

- 1 OpenMP ~7 seconds
- 4 OpenMP threads ~2.2 seconds
- 8 OpenMP threads ~1.25 seconds

Total cores for a single chain: ~12-32 cores

Reasonably easy to adapt to LCDM extensions
Overview

1. Multi-probe inference
 a. Forecasting results - overview (Tim Eifler)
 b. Next Gen Pipeline - Cocoa (Vivian Miranda)
 c. 2D+3D (Elisabeth Krause)

2. Kinematic Lensing
 a. Concepts+Overview (Eric Huff)
 b. Measurement with Keck and HST (Pranjal Singh)
 c. KL with Roman Space Telescope (Jiachuan Xu)

3. Roman voids for cosmology (Alice Pisani)
Historically, imaging and spectroscopic cosmology analyses carried out as independent analyses (mostly even by separate survey collaborations)

- However, if surveys overlap, redshift-space power spectra and angular clustering statistics are inherently correlated
- UA group derived first rigorous cross-covariance between 3D and 2D measurements from mode counting arguments

\[
\text{Cov}[P(k), C^{(i)j}(l)] = \frac{1}{V} \frac{1}{\Omega_s} \left[\langle \tilde{\delta}_{-k} \tilde{\kappa}_l^{(i)} \rangle \langle \tilde{\delta}_k \tilde{\kappa}_l^{(j)} \rangle + \langle \tilde{\delta}_k \tilde{\kappa}_l^{(i)} \rangle \langle \tilde{\delta}_{-k} \tilde{\kappa}_l^{(j)} \rangle \right] \\
= \frac{\Omega_s}{V} p_2(k) \left[\int d\chi \int d\chi' g^{(i)}(\chi) g^{(j)}(\chi') e^{ik \parallel (\chi - \chi')} \left[f_{k_1, l}(\chi) f_{k_1, l}(\chi') + f_{k_1, -l}(\chi) f_{k_1, -l}(\chi') \right] \right]
\]

- Methodological advance that is of great interest beyond Roman, e.g., DESI x Rubin, Euclid

Ongoing work by Supranta Sarma Boruah, Elisabeth Krause, Tim Eifler
Topic 1: Multi-probe Inference (2D+3D)

HLSS and HLIS probe cosmic structure in overlapping volume

- Accurate joint analyses require accounting for covariance between different observables
- Cross-covariance between projected statistics and redshift space power spectrum ignored in previous forecasts
- Updated forecasts using cross-covariance between HLSS and HLIS measurements ongoing
- Cross-covariance will enable cross-correlation science, e.g., galaxy-galaxy lensing with HLSS galaxies as lenses

Ongoing work by Supranta Sarma Boruah, Elisabeth Krause, Tim Eifler
Overview

1. **Multi-probe inference**
 a. Forecasting results - overview (Tim Eifler)
 b. Next Gen Pipeline - Cocoa (Vivian Miranda)
 c. 2D+3D (Elisabeth Krause)

2. **Kinematic Lensing**
 a. Concepts+Overview (Eric Huff)
 b. Measurement with Keck and HST (Pranjal Singh)
 c. KL with Roman Space Telescope (Jiachuan Xu)

3. **Roman voids for cosmology** (Alice Pisani)
Wide variety of hard measurement problems in WL:
What are the root causes?

shear and shape are degenerate

Shape noise:
\[
\frac{\sigma_{int}}{n_{\text{gal}}} \gg \gamma
\]

Use everything you can see to increase \(n_{\text{gal}} \)

Large samples of marginal galaxies

- intrinsic alignments
- shear calibration
- large PSF corrections
- photo-z's instead of spectra
KL basics

face-on, but sheared

inclined, but not sheared
Effect of shear on kinematic observables:

$q_{\text{int}} = 0.75, \gamma_+ = 0, \gamma_\times = 0$

$q_{\text{int}} = 0.2$
Overview

1. Multi-probe inference
 a. Forecasting results - overview (Tim Eifler)
 b. Next Gen Pipeline - Cocoa (Vivian Miranda)
 c. 2D+3D (Elisabeth Krause)

2. Kinematic Lensing
 a. Concepts+Overview (Eric Huff)
 b. Measurement with Keck and HST (Pranjal Singh)
 c. KL with Roman Space Telescope (Jiachuan Xu)

3. Roman voids for cosmology (Alice Pisani)
Topic 2: Kinematic Lensing (Measurement)

- Kinematic Lensing is a promising technique and possibly really powerful for Roman

- Given KL is new, we want to test if it works in practice and so I am working on a measurement using Keck data

- Below I describe the modeling pipeline and early results based on simulations
KL Measurement pipeline

- **Image model**
 - Use Galsim to model image
 - $n=1$ inclined Sersić profile (r_{hl}, q_z, sini)

- **Spectrum model**
 - Model the slit as a 2D grid
 - Apply coordinate transformations to the grid accounting for the effects of shear, intrinsic galaxy position angle and inclination
 - Assume arc tan velocity field
 - Tully-Fisher prior on maximum circular velocity

Table 1. Fit parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_+</td>
<td>Shear component</td>
<td>$\mathcal{U}(-0.7, 0.7)$</td>
</tr>
<tr>
<td>γ_x</td>
<td>Shear component</td>
<td>$\mathcal{U}(-0.7, 0.7)$</td>
</tr>
<tr>
<td>$r_{hl,\text{image}}$</td>
<td>Image half-light radius</td>
<td>$\mathcal{U}(0.15, 5)$</td>
</tr>
<tr>
<td>$r_{hl,\text{spec}}$</td>
<td>Spectrum half-light radius</td>
<td>$\mathcal{U}(0.15, 5)$</td>
</tr>
<tr>
<td>I_0</td>
<td>Central brightness</td>
<td>$\mathcal{U}(1, 10^4)$</td>
</tr>
<tr>
<td>V_{circ}</td>
<td>Maximum circular velocity</td>
<td>$\mathcal{N}(%logV_{TF}, \sigma_{TF})$</td>
</tr>
<tr>
<td>r_0</td>
<td>Galaxy dynamic center</td>
<td>$\mathcal{U}(-2, 2)$</td>
</tr>
<tr>
<td>r_{vscale}</td>
<td>Velocity scale radius</td>
<td>$\mathcal{U}(0.1, 10)$</td>
</tr>
<tr>
<td>sini</td>
<td>Galaxy inclination angle</td>
<td>$\mathcal{U}(-1, 1)$</td>
</tr>
<tr>
<td>θ_{int}</td>
<td>Intrinsic galaxy position angle</td>
<td>$\mathcal{U}(-\pi/2, \pi/2)$</td>
</tr>
</tbody>
</table>
Results from Simulations
Overview

1. Multi-probe inference
 a. Forecasting results - overview (Tim Eifler)
 b. Next Gen Pipeline - Cocoa (Vivian Miranda)
 c. 2D+3D (Elisabeth Krause)

2. Kinematic Lensing
 a. Concepts+Overview (Eric Huff)
 b. Measurement with Keck and HST (Pranjal Singh)
 c. KL with Roman Space Telescope (Jiachuan Xu)

3. Roman voids for cosmology (Alice Pisani)
Defining the KL sample

- Scenarios Definition:

 Reference HLS Imaging
 - J+H band combined $S/N > 18$
 - Ellipticity error $\sigma_e < 0.2$
 - Resolution factor $R > 0.4$

 Reference HLS Spectroscopy
 - At least one of H_α, H_β and $[O_\text{III}]$ is resolved within $1 - 2 \mu m$
 - Emission flux $> 10^{-16}$ erg/s/cm2
 - Half-light radius $> 0.1''$
 - z-band magnitude ≤ 24.5

Obtained from COSMOS and CANDELS
CosmoLike Likelihood/Cov Settings

- Observable: shear-shear power spectrum $C_{kk}^{ij}(\ell)$ (20 log bins from $30 \leq \ell \leq 4000$)
- Covariance matrix: Gaussian + non-Gaussian + super-sample covariance, $\Omega_s = 2000 \text{ deg}^2$
- Cosmological parameters sampled: $\{\Omega_m, \sigma_8, n_s, w_0, w_a, \Omega_b, h\}$
- Systematics modeling

<table>
<thead>
<tr>
<th>Systematic Parameters</th>
<th>WL</th>
<th>KL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fiducial</td>
<td>Prior</td>
</tr>
<tr>
<td>$\Lambda_{\text{z,src}}$</td>
<td>0.0</td>
<td>$\mathcal{N}(0, 2e^{-3})$</td>
</tr>
<tr>
<td>$\sigma_{\gamma,\text{src}}^2$</td>
<td>0.01</td>
<td>$\mathcal{N}(0.01, 2e^{-3})$</td>
</tr>
<tr>
<td>m^i</td>
<td>0.0</td>
<td>$\mathcal{N}(0, 2e^{-3})$</td>
</tr>
<tr>
<td>A_{1A}</td>
<td>5.92</td>
<td>$\mathcal{N}(5.92,3.0)$</td>
</tr>
<tr>
<td>β_{1A}</td>
<td>1.1</td>
<td>$\mathcal{N}(1.1,1.2)$</td>
</tr>
<tr>
<td>η_{1A}</td>
<td>-0.47</td>
<td>$\mathcal{N}(-0.47,3.8)$</td>
</tr>
<tr>
<td>$\eta_{\text{high-z}}$</td>
<td>0.0</td>
<td>$\mathcal{N}(0.0,2.0)$</td>
</tr>
<tr>
<td>Q_1</td>
<td>0.0</td>
<td>$\mathcal{N}(0,0.16,0)$</td>
</tr>
<tr>
<td>Q_2</td>
<td>0.0</td>
<td>$\mathcal{N}(0,0.2,0)$</td>
</tr>
<tr>
<td>Q_3</td>
<td>0.0</td>
<td>$\mathcal{N}(0,0.08)$</td>
</tr>
</tbody>
</table>

Similar to the *Roman Space Telescope* x Rubin Observatory (*Eifler et al. 2021*)
Forecast results: WL v.s. KL

- Figure-of-Merit: 3.65x enhancement in $w_p - w_a$ 1.70x enhancement in $\Omega_m - S_8$
Forecast results: impact of systematics

- Photo-z and shear calibration uncertainties are comparable with baryon effects uncertainty

<table>
<thead>
<tr>
<th>FoM</th>
<th>WL</th>
<th>KL ($N_{\text{bins}} = 10$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PZ+M+BA</td>
<td>PZ+M+BA</td>
</tr>
<tr>
<td>FoM$_{wp\Lambda}$</td>
<td>10.55</td>
<td>38.51</td>
</tr>
<tr>
<td>FoM${\Omega{\Lambda}}$</td>
<td>5307</td>
<td>9017</td>
</tr>
</tbody>
</table>
Overview

1. Multi-probe inference
 a. Forecasting results - overview (Tim Eifler)
 b. Next Gen Pipeline - Cocoa (Vivian Miranda)
 c. 2D+3D (Elisabeth Krause)

2. Kinematic Lensing
 a. Concepts+Overview (Eric Huff)
 b. Measurement with Keck and HST (Pranjal Singh)
 c. KL with Roman Space Telescope (Jiachuan Xu)

3. Roman voids for cosmology (Alice Pisani)
Topic 3: Roman voids for cosmology

Voids have a strong sensitivity to cosmology (Dark energy, massive neutrinos, growth of structure)

Kreisch, Pisani, Villaescusa-Navarro, Spergel, Wandelt, Hamaus and Bayer ArXiv: 2107.02304
Roman will provide access to a unique set of cosmic voids.

Prediction based on galaxy $n(z)$ from Merson et al. 2017

$$w(z) = w_0 + w_a \frac{z}{z + 1}$$
Roman voids
\[\sim 100000 \text{ voids!} \]

Roman void size function

$dN/dn(R_v)$ vs. R_v for $z = 1.2 - 1.4$

$dN/dn(R_v)$ vs. R_v for $z = 1.4 - 1.6$

$dN/dn(R_v)$ vs. R_v for $z = 1.6 - 1.8$

$dN/dn(R_v)$ vs. R_v for $z = 1.8 - 2.0$
Monopole and quadrupole of the void-galaxy cross-correlation function

\[
\xi^s(s) = \xi(r) + \frac{f}{3b} \bar{\xi}(r) + \frac{f}{b} \mu^2 [\xi(r) - \bar{\xi}(r)]
\]
Further work needed

- Void-galaxy cross-correlation function theoretical prediction fit to voids from the HLSS galaxy mock for up-to-date forecasts.
- Void size function
- Void-void autocorrelation
- Complete the pipeline to prepare data analysis