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Science Requirements
1. Measure	the	mass	functions	of	cold	exoplanets	with	masses	> 1 M!"#$% and	

semimajor	axes	≥ 1 AU to	better	than	15%	per	decade	in	mass.

2. Measure	the	frequency	of	Mars-mass	planets	to	better	than	15%.

3. Measure	the	frequency	of	free-floating	planetary	mass	objects	with	masses	from	
that	of	M&"#' to	10	M()*+$,#.	If	there	is	1	M!"#$% free-floating	object	per	star	in	
the	Milky	Way,	measure	their	frequency	to	better	than	25%

4. Estimate	𝜂!"#$% to	better	than	0.2	dex through	extrapolation	from	more	massive	
and	wider	orbit	planets.

5. Estimate	the	mass	and	distance	to	host	stars	and	planets	to	better	than	20%	for	
at	least	40%	of	detected	systems.
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• Detection	Efficiency	~0.01 → 10,000 microlensing	events

• Event	rate	is	~5×10-. per source star per year

• 100	million	sources/deg/ → 5000 ,0,1$'
2,3!4,"#

→ ~2 deg/ survey	area	for	1	year

• Minimum	timescale	of	perturbation	~1	hour	→ ≲ 15 −minute cadence

• ~5-year	survey	baseline	and	𝜇567~10
8"'
4,"#

→50	mas	lens-source	separation	



Simulated Predictions for the Number of Detections
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Penny et al. 2013, 2019



CURRENT Roman survey parameters
• 0.28 deg! FOV, 7 fields → ∼ 2 deg! total
• New slew times → 10 fields

• Six 72-day seasons clustered at start/end
• 4.5 − year baseline

• 15 min cadence in wide infrared bandpass
• ≤12 hr cadence in bluer bandpass

• 2×10" stars, >30,000 microlensing events

𝐷!"#$ = 6.8 kpc
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Evidence for free-floating planets
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What can Roman teach us 
about free-floating planets?

• Roman will improve on 
previous limits

• Roman will test 
predictions from planet 
formation theories

• ~250 FFP events 
assuming fiducial mass 
function

Object	Mass	𝑀



Science Requirements

4. Estimate	𝜂!"#$% to	better	than	0.2	dex through	extrapolation	from	more	massive	
and	wider	orbit	planets.
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New Galactic Model Sampler – “Synthpop”
• Need updates to current Galactic Model for most accurate predictions
• Most sensitive to Earth-analog systems with lenses near the Galactic Center
• Known inconsistencies of current Besancon model in this region

• E.g. bar angle, relative proper motion distribution

• Synthpop is a new, modular Galactic Model Sampling code to generate 
synthetic star catalogs given any model inputs
• Default model is will be results from Koshimoto et al. 2021
• New model required for most accurate results in Earth analog frequency and mass 

measurements
• Packaging and developing for public distribution release



Science Requirements

5. Estimate	the	mass	and	distance	to	host	stars	and	planets	to	better	than	20%	for	
at	least	40%	of	detected	systems.



Bhattacharya	et	al.,	2018

More likely to measure the true mass of 
Earth-analog systems

Microlensing is sensitive to the mass ratio 
between the planet and the host star

Planets with higher mass (brighter) host 
stars more likely to have 𝜇!"# measured

Model of 
the event

Use 4.5-year survey-baseline to measure 
lens-source separation (𝜇!"#)



Things To Do and Possible Changes
• Incorporate Koshimoto et al. 2021 Galactic Model
• Needed for Earth-analog frequency, mass-measurement predictions

• More in-depth trade studies 
• E.g., cadence, number of fields, exposure time
• Slew/settle times and filter wheel cycles could be major limits

• Study impacts of altering survey to improve science yield
• E.g., visits to the Galactic Center while pointed in vicinity
• Contemporaneous observation efforts (e.g., Euclid, PRIME)



Thank you!



Scaling	𝜃! and	𝑡!
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Mission design changes
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Event rate weighting

𝑤u = 0.25 degV 𝑓vvZwxyz{|}Γ~��!𝑇�u�𝑢Z,���
2𝜇���,u𝜃�,u

𝑊

𝑊 =?
u

2𝜇���,u𝜃�,u



E
ve

nt
R

at
e

P
er

S
ou

rc
e

Γ
[1

0−
6

yr
−

1
]

b [deg]

MOA All Star
MOA Ext. RC

Besançon
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