Roman Galactic Bulge Time Domain Survey: Survey Yield and Optimization

Samson A. Johnson (he/him)

Matthew T. Penny, B. Scott Gaudi, RGES-SIT

Roman Science Team Community Briefing

2020-11-16

- 1. Measure the mass functions of cold exoplanets with masses > 1 M_{Earth} and semimajor axes ≥ 1 AU to better than 15% per decade in mass.
- 2. Measure the frequency of Mars-mass planets to better than 15%.
- 3. Measure the frequency of free-floating planetary mass objects with masses from that of M_{Mars} to 10 $M_{Jupiter}$. If there is 1 M_{Earth} free-floating object per star in the Milky Way, measure their frequency to better than 25%
- 4. Estimate η_{Earth} to better than 0.2 dex through extrapolation from more massive and wider orbit planets.
- 5. Estimate the mass and distance to host stars and planets to better than 20% for at least 40% of detected systems.

- 1. Measure the mass functions of cold exoplanets with masses > 1 M_{Earth} and semimajor axes ≥ 1 AU to better than 15% per decade in mass.
- 2. Measure the frequency of Mars-mass planets to better than 15%.
- 3. Measure the frequency of free-floating planetary mass objects with masses from that of M_{Mars} to 10 $M_{Jupiter}$. If there is 1 M_{Earth} free-floating object per star in the Milky Way, measure their frequency to better than 25%
- 4. Estimate η_{Earth} to better than 0.2 dex through extrapolation from more massive and wider orbit planets.
- 5. Estimate the mass and distance to host stars and planets to better than 20% for at least 40% of detected systems.

Estimates of Survey Parameters to detect 100 Earth-mass planets (~10% precision)

- Detection Efficiency $\sim 0.01 \rightarrow 10,000$ microlensing events
- Event rate is $\sim 5 \times 10^{-5}$ per source star per year
- 100 million sources/deg² \rightarrow 5000 $\frac{\text{events}}{\text{deg}^2\text{year}} \rightarrow \sim 2 \text{ deg}^2 \text{ survey area for 1 year}$
- Minimum timescale of perturbation ~ 1 hour $\rightarrow \lesssim 15$ minute cadence
- ~5-year survey baseline and $\mu_{rel} \sim 10 \frac{\text{mas}}{\text{year}} \rightarrow 50$ mas lens-source separation

Simulated Predictions for the Number of Detections

CURRENT Roman survey parameters

- 0.28 deg² FOV, 7 fields $\rightarrow \sim 2 \text{ deg}^2$ total
 - New slew times → 10 fields
- Six 72-day seasons clustered at start/end
 - 4.5 year baseline
- 15 min cadence in wide infrared bandpass
 - ≤12 hr cadence in bluer bandpass
- 2×10^8 stars, >30,000 microlensing events

Fiducial mass function adapted from Cassan et al. 2012

$$\frac{d^{2}N}{d\log M_{p}d\log a} = \begin{cases} \frac{0.24}{\text{dex}^{2}} \left(\frac{m_{p}}{95M_{\oplus}}\right)^{-0.74} & \text{for } M_{p} > 5.2 M_{\oplus} \\ \frac{2}{\text{dex}^{2}} & \text{for } M_{p} < 5.2 M_{\oplus} \end{cases}$$

- 1. Measure the mass functions of cold exoplanets with masses > 1 M_{Earth} and semimajor axes ≥ 1 AU to better than 15% per decade in mass.
- 2. Measure the frequency of Mars-mass planets to better than 15%.
- 3. Measure the frequency of free-floating planetary mass objects with masses from that of M_{Mars} to 10 $M_{Jupiter}$. If there is 1 M_{Earth} free-floating object per star in the Milky Way, measure their frequency to better than 25%
- 4. Estimate η_{Earth} to better than 0.2 dex through extrapolation from more massive and wider orbit planets.
- 5. Estimate the mass and distance to host stars and planets to better than 20% for at least 40% of detected systems.

Evidence for free-floating planets

$$t_E = \frac{\theta_E}{\mu_{rel}} \propto \sqrt{M_{lens}}$$

What can *Roman* teach us about free-floating planets?

- Roman will improve on previous limits
- Roman will test predictions from planet formation theories
- ~250 FFP events assuming fiducial mass function

- 1. Measure the mass functions of cold exoplanets with masses > 1 M_{Earth} and semimajor axes ≥ 1 AU to better than 15% per decade in mass.
- 2. Measure the frequency of Mars-mass planets to better than 15%.
- 3. Measure the frequency of free-floating planetary mass objects with masses from that of M_{Mars} to 10 $M_{Jupiter}$. If there is 1 M_{Earth} free-floating object per star in the Milky Way, measure their frequency to better than 25%
- 4. Estimate η_{Earth} to better than 0.2 dex through extrapolation from more massive and wider orbit planets.
- 5. Estimate the mass and distance to host stars and planets to better than 20% for at least 40% of detected systems.

HZ and microlensing

Habitable Zone (Kopparapu+ 2013)

Function of host mass, age, etc.

Einstein Ring Radius

- Peak sensitivity to planets
- Depends on host (lens) star mass
- Function of lens/source distance

$$r_E = \sqrt{\frac{4GM_L}{c^2} \frac{D_L}{D_S} (D_S - D_L)}$$

Johnson et al., in prep

New Galactic Model Sampler - "Synthpop"

- Need updates to current Galactic Model for most accurate predictions
 - Most sensitive to Earth-analog systems with lenses near the Galactic Center
 - Known inconsistencies of current Besancon model in this region
 - E.g. bar angle, relative proper motion distribution
- Synthpop is a new, modular Galactic Model Sampling code to generate synthetic star catalogs given any model inputs
 - Default model is will be results from Koshimoto et al. 2021
 - New model required for most accurate results in Earth analog frequency and mass measurements
- Packaging and developing for public distribution release

- 1. Measure the mass functions of cold exoplanets with masses > 1 M_{Earth} and semimajor axes ≥ 1 AU to better than 15% per decade in mass.
- 2. Measure the frequency of Mars-mass planets to better than 15%.
- 3. Measure the frequency of free-floating planetary mass objects with masses from that of M_{Mars} to 10 $M_{Jupiter}$. If there is 1 M_{Earth} free-floating object per star in the Milky Way, measure their frequency to better than 25%
- 4. Estimate η_{Earth} to better than 0.2 dex through extrapolation from more massive and wider orbit planets.
- 5. Estimate the mass and distance to host stars and planets to better than 20% for at least 40% of detected systems.

More likely to measure the true mass of Earth-analog systems

Microlensing is sensitive to the mass ratio between the planet and the host star

Use 4.5-year survey-baseline to measure lens-source separation (μ_{rel})

Planets with higher mass (brighter) host stars more likely to have μ_{rel} measured

Things To Do and Possible Changes

- Incorporate Koshimoto et al. 2021 Galactic Model
 - Needed for Earth-analog frequency, mass-measurement predictions
- More in-depth trade studies
 - E.g., cadence, number of fields, exposure time
 - Slew/settle times and filter wheel cycles could be major limits
- Study impacts of altering survey to improve science yield
 - E.g., visits to the Galactic Center while pointed in vicinity
 - Contemporaneous observation efforts (e.g., Euclid, PRIME)

Scaling θ_E and t_E

$$\theta_E \approx 700 \mu as \left(\frac{M}{0.5 M_{\odot}}\right)^{\frac{1}{2}} \approx 30 \mu as \left(\frac{M}{M_J}\right)^{\frac{1}{2}} \approx 2 \mu as \left(\frac{M}{M_{\oplus}}\right)^{1/2}$$

$$t_E \approx 25 days \left(\frac{M}{0.5M_{\odot}}\right)^{\frac{1}{2}} \approx 1 day \left(\frac{M}{M_I}\right)^{\frac{1}{2}} \approx 1.5 hours \left(\frac{M}{M_{\oplus}}\right)^{1/2}$$

	Mission design changes			
	IDRM	DRM1	DRM2	AFTA
Reference	Green et al. (2011)	Green et al. (2012)	Green et al. (2012)	Spergel et al. (2015)
Mirror diameter (m)	1.3	1.3	1.1	2.36
Obscured fraction (area, %)	0	0	0	13.9
Detectors	7×4 H2RG-10	9×4 H2RG-10	7×2 H4RG-10	6×3 H4RG-10
Plate scale ("/pix)	0.18	0.18	0.18	0.11
Field of view (deg ²)	0.294	0.377	0.587	0.282
Fields	7	7	6	10
Survey area (deg ^s)	2.06	2.64	3.52	2.82
Avg. slew and settle Time (s)	38	38	38	38

L2

432

72

6

5

1.0-2.4 (W169)

0.74–1.0 (Z087)

L2

266

72

3.7

3

1.0-2.4 (W169)

0.74–1.0 (Z087)

L2

432

72

6

5

1.0-2.0 (W149)

0.74–1.0 (Z087)

Orbit

Seasons

Total Survey length (d)

Primary bandpass (μ m)

Secondary bandpass (μ m)

Baseline mission duration (yr)

Season length (d)

WFIRST Cycle 7

 $_{-1,2}$

2.36

13.9

6×3 H4RG-10

0.11

0.282

1.97

83.1

L2

432

72

6

5

0.93-2.00 (W149)

0.76–0.98 (**Z087**)

Geosynchronous

411**

72

6

6

0.93-2.00 (W149)

0.76–0.98 (Z087)

Event rate weighting

$$w_i = 0.25 \deg^2 f_{1106WFIRST} \Gamma_{\deg^2} T_{sim} u_{0,max} \frac{2\mu_{rel,i}\theta_{E,i}}{W}$$

$$W = \sum_{i} 2\mu_{rel,i}\theta_{E,i}$$

