SciServer & JOHNS HOPKINS

Use of the Spark Distributed Computing Engine
to Enhance SciServer Capabilities

SciServer & c JOHNS HOPKINS

UNIVERSITY

SciServer on Big Data

e Data-proximate computing

e Interface duality

o SQL for search and retrieval

o Python (et al) codes for analysis on results
e Typical workflow

o Search for interesting objects based on summary data/statistics using SQL
o Retrieve table, perhaps up to millions of results

o Retrieve related raw data (e.g. image/spectrum) for some objects

o Further analysis in a contained compute environment

SQL Files
Compute

A 4
A

CasJobs NFS Share

Python

SciServer @} icl JOHNS HOPKINS

UNIVERSITY

Limitations

e Mode works really well for:
o “Needle in the haystack” problems
o Simple full-sky aggregations
o Summary statistics
e Less well for:
o Some machine learning applications
m Where we almost want to download the whole catalog
o Queries based custom “derivative” values
m Typically database stores derived values, e.g. age/abundance not spectrum
o When the “needle” gets very large

m We might need to work in batches, things get slow
o Reprocessing/ETL

SciServer & c JOHINS HOPKINS
Spark
e Spark collapses the SQL/code duality
e Parallelizes it, and places it on top of the data
e All with simple and resilient interfaces (and multi-language)
sSQL Files
This: CasJobs » Compute NFS Share
\ V
Compute Compute Compute Compute
Becomes: 356,-’(| saL J||[_saL J||[_saL J||[_saL]
| Data | | Data | | Data | | Data |

Microsoft Big Data Clusters (BDC)

Introducing Big Data Clusters - SQL Server Big Data Clusters | Microsoft Docs

Data virtualization

fa—

External data
sources

SQL Server
Teradata
MongoDB

Oracle

Custom BI

e Analytics

Operational query with master pool
oo sl
-

Scale-out query performance with compute pool

Contained availability

@ SQL Server | or group

SQL compute
node

= |

u Data Lake Analytics with

SQL compute
node

SQL compute
node

Dedicated BEE9
HDFS 13

storage pool
sQL saQL sQL
Spark | Gerver Spark | cerver |22 | 5P | server
HDFS tiering
S3A ADLS Gen2 HDFS

Remote storage

%, Active Directory
—

Kubernetes namespace

ﬁ Controller { REST }

Distributed table with data pool
Dedicated analytics with Spark pool

Spark e Spark

JOHNS HOPKINS

UNIVERSITY

Languages
T-SQL
Python

PySpark
Spark Scala
Spark SQL
R
SparkR
sparklyr

Java

SciServer @@ cl JOHNS HOPKINS

SciServer + Spark

MS BDC/Kubernetes Static/Shared

LOCAL SciServer . L(I;VY/ |

Spark Gateway - ,
iﬁlna_daap
SciServer HIES]

o S
@ JupyterSparkmagic ,
g’ AWS EMR on demand/single user

HTTP over SSH
tunnel

AWS -
S3

SciServer & cl JOHNS HOPKINS

Case Study: SDSS MaNGA

e |FU data, 2-d spatial coordinate + spectral cubes
e Make available a variety of raw/processed products
e A PostgreSQL implementation can handle array type data, but Spark may

simplify queries and improve wall-clock time

SciServer & cl JOHNS HOPKINS

Case Study: SDSS MaNGA

e Data ingest:
o Using Spark, read in FITS files from SAS
o Conversion function: Python + Astropy -> Spark DataFrame type
o Write parquet files to HDFS
o This system is suitable for large scale data (re-)processing, easy to distribute code over data

and scale out, no requirement on specific file formats (though some caveats for “non-native”
formats)

SciServer & \> cl JOHNS HOPKINS

Case Study: SDSS MaNGA

Ex Test Query: Select all galaxies with an H-alpha flux value
> 5 in more than 20% of their good spaxels

Postres

.
e Benchmark Queries:
.

. . . H SELECT anon_1.mangadatadb_cube_mangaid, anon_L.mangadatadb_cube_plate, concat(anon_L.mangadatadb_cube_plate,

(@) aC OrS n Ip ICI y, a =liNn Ie, anon_l.mangadatadb_ifudesign_name) ~ AS plateifu, anon_lmangadatadb_ifudesign_name ~ FROM (SELECT mangadatadb.cube.mangaid ~ AS

)_cube_mangaid, cube.plate AS _cube_plate, cube.plate, -, ifudesign.name) AS plateifu,
mangadatadb.ifudesign.name mangadatadb_fudesign_name, mangadapdb.cleanspaxelprop7.emiine_gfiux_ha_6564 As

S Ca I a bl I |t mangadapdb_cleanspaxelprop7_emline. gﬂux ha_6564, X AS X X, y AS
_y FROM cube JOIN ifudesign ON ifudesign.pk = cube.ifudesign_pk JOIN

fle ON cubepk = file.cube_pk JOIN ON filepk =

B . file_pk JOIN pipeline_info AS drpalias ON drpaliaspk = mangadatadb.cube.pipeline_info_pk JOIN

. ra Itl O n a mangadatadb.pipeline_info AS dapalias ON dapalias.pk = mangadapdb.file.pipeline_info_pk JOIN (SELECT mangadapdb.cleanspaxelprop7.fie_pk AS binfile,
= count(mangadapdb.cleanspaxelprop?.pk) AS goodcount FROM WHERE binid_binned_spectra != -1 AND

mangadapdb.cleanspaxelprop7.binid_stellar_continua = -1 AND mangadapdb.cleanspaxelprop?.binid_spectral_indices = -1 AND

mangadapdb.cleanspaxelprop7.binid_em_line_moments '= -1 AND mangadapdb.cleanspaxelprop7.binid_em_line_models '= -1 GROUP BY

(@) D e S i g n Ca n be CO m p I eX, m O re mangadapdb.cleanspaxelprop? file_pk) AS bingood ON bingood.binfle = mangadapdb.cleanspaxelprop.file_pk JOIN (SELECT mangadapdb.cleanspaxelprop7.file_pk

AS valfile, count(mangadapdb.cleanspaxelprop?.pk) AS valcount FROM WHERE .emiine_gflux_ha_6564
>5GROUP BY file_pk) AS oN alfile = file_pk WHERE drpalias.pk = 32 AND

targeted, tradeoff for use-cases e~ o it € gy 5 o] i 5 ey o o,
° Spark Wall: 33min
More general - store everything,
achieve performance via parallelism
and clever storage formats Spark
o Trade-off is fast queries suffer " B o e e e b

get counts of number of good spaxels with H-alpha > 5, grouped by plateifu
H H fc = maps.filter(good_spaxels).filter(maps['emline_gflux_ha 6564'] > 5).groupby('plateifu').count().withColumnRenamed
scheduling overhead, lack of index, Coount:, Hitterc)
join the tables and filter where
tmp = tc.join(fc, 'plateifu’)
etC. tmp. filter(tmp.filterc >= 0.2 * tmp.totalc).count()

Wall: ~7 seconds

e

SciServer & cl JOHNS HOPKINS

Case Study: SDSS MaNGA

e Spark not always faster PSQL Spark
o Overheads in managing sessions could make it
quite a bit slower for short queries Q1 <5s <5s
o Can'’t beat highly optimized DB that fit in memory of Q2 33min <10s
single node
e Mixed mode (size dependent) Q3 3min <10s

o SQL for some use-cases, e.g. object metadata
o Spark for others, e.g. custom codes, ML, complex

queries
o General idea behind MS BDC

e

SciServer & cl JOHNS HOPKINS

Case Study: ZTF local/AWS

Obtained parquet files from our UW colleagues (thanks!)

> 1B objects, light curves in up-to 3 bands of varying number of epochs
~3TB compressed

Compare local Spark cluster with AWS EMR+S3

SciServer @} c JOHNS HOPKINS

UNIVERSITY

Case Study: ZTF local/AWS

e Task: Clustering on lightcurve + object features. Unsupervised analog to [1]
o Involves SQL for subselect, cleaning
o Custom codes for feature extraction (difficult/impossible with standard SQL)
o Heavy computations for light-curve period folding (esp when considering 1B+ objects)

In [16]: M spark.sql(f'"’
SELECT 'r-only' cat, count(*) n FROM ztf nobs WHERE nobs r >= {min_obs}
UNION SELECT 'g+r' cat,count(*) n FROM ztf nobs WHERE nobs g >= {min_obs} AND nobs r >= {min_obs}
UNION SELECT 'g+r+i' cat,count(*) n FROM ztf_nobs WHERE nobs_g >= {min_obs} AND nobs r >= {min_obs} AND nobs i >= {min_obs}
ORDER BY n DESC
''").toPandas().set_index('cat')/ztf N

e

featurized rdd = spark.sql(f'SELECT * FROM {table} WHERE stripe = {stripe}') \
.rdd \
.map(filter 1lc by flags) \
.filter(lambda r: r['nobs r'] > min_obs) \
.map(lambda r: (r['psl objid'l, r)) \
.mapValues(featurize row) \
.map(to_feature cols)
spark.createDataFrame(featurized rdd, schema=schema, verifySchema=False) \
.write.mode('overwrite').parquet(feature stripe)

[1] Van Rostel, Jan et al. “The ZTF Source Classification Project I. Methods and Infrastructure”

SciServer & cl JOHNS HOPKINS

Case Study: ZTF local/AWS

e Local vs Remote
o Local:
m Recycled ~10 year old hardware for experiments
m Limited scalability, takes some effort to add hardware
m Critically, we already have an operational data center
o Cloud (AWS):
m State-of-the art hardware
m Essentially unlimited scaling
m Costly (in your face - but easy to understand)

Feature generation: AWS EMR: Local:
e 40 x cba.4xlarge [16 core/ 32GB] e 14 x[24 core / 48 GB]
e Walltime: ~16 hrs e Wall time: ~100 hrs

e Cost: ~$360 (ec2 spot/emr/s3) e Cost: ~$15*

* assuming 14 nodes at $10,000 each with 5 year lifetime, constant use. Ele: Tkw @
$0.09/hr per node No management/running costs considered. Large grain of salt required!

SciServer & cl JOHNS HOPKINS

Case Study: ZTF local/AWS

e Features close to > typical node memory
Interested in DBSCAN over Kmeans, but more difficult to distribute - not
included in Spark ML library

e Even after PCA-based dimensionality reduction, single-thread neighbor

search expensive (tree generation)
o Long haul feature generation on Spark
o Transfer ~40GB of PCA-features to SciServer compute
o DBSCAN using scikit-learn - exceeds jobs timeouts

SciServer & icl JOHNS HOPKINS

Conclusions

e SciServer does data-proximate big-data - Adding Spark can turn big -> BIG

e Standard SQL databases have some limitations
o Often designed with specific use-case focus
o Arbitrary functions against data non-trivial
o Search and retrieve / summary

e With Spark

Less structured - throw cores at the problem

Highly scalable - throw cores at the problem

Save some cores with clever storage formats (like parquet)

Generality - run SQL and arbitrary code - don’t have to know all the questions
Use as system for scaling data (re-)processing/ETL

o O O O O

SciServer & cl JOHNS HOPKINS

Conclusions

e Cloud

o Costs - on demand

o Scalability - more control over bringing down walltime
e Local

o Can be cost-effective - older hardware mixed hardware
o Difficult to scale

SciServer & cl JOHNS HOPKINS

Conclusions

e Interfaces
o So far, our experiments were a mix of SQL and Python code from Jupyter notebooks
o SQL from CasJobs-like interface might be desirable
m Overhead in scheduling spark sessions
m Experimenting with Trino (forked from PrestoDB)

