
Use of the Spark Distributed Computing Engine
to Enhance SciServer Capabilities

SciServer on Big Data

● Data-proximate computing
● Interface duality

○ SQL for search and retrieval
○ Python (et al) codes for analysis on results

● Typical workflow
○ Search for interesting objects based on summary data/statistics using SQL
○ Retrieve table, perhaps up to millions of results
○ Retrieve related raw data (e.g. image/spectrum) for some objects
○ Further analysis in a contained compute environment

CasJobs Compute NFS Share
SQL Files

Python

Limitations

● Mode works really well for:
○ “Needle in the haystack” problems
○ Simple full-sky aggregations
○ Summary statistics

● Less well for:
○ Some machine learning applications

■ Where we almost want to download the whole catalog
○ Queries based custom “derivative” values

■ Typically database stores derived values, e.g. age/abundance not spectrum
○ When the “needle” gets very large

■ We might need to work in batches, things get slow
○ Reprocessing/ETL

● Spark collapses the SQL/code duality
● Parallelizes it, and places it on top of the data
● All with simple and resilient interfaces (and multi-language)

Spark

CasJobs Compute NFS Share
SQL Files

Python

Compute

SQL
Data

This:

Becomes:
Compute

SQL
Data

Compute

SQL
Data

Compute

SQL
Data

Microsoft Big Data Clusters (BDC)

SciServer + Spark

SciServer
Spark Gateway

LOCAL

AWS

SciServer

S3

AWS EMR on demand/single user

MS BDC/Kubernetes Static/Shared

HTTP over SSH
tunnel

Sparkmagic

Case Study: SDSS MaNGA

● IFU data, 2-d spatial coordinate + spectral cubes
● Make available a variety of raw/processed products
● A PostgreSQL implementation can handle array type data, but Spark may

simplify queries and improve wall-clock time

Case Study: SDSS MaNGA

● Data ingest:
○ Using Spark, read in FITS files from SAS
○ Conversion function: Python + Astropy -> Spark DataFrame type
○ Write parquet files to HDFS
○ This system is suitable for large scale data (re-)processing, easy to distribute code over data

and scale out, no requirement on specific file formats (though some caveats for “non-native”
formats)

Case Study: SDSS MaNGA

● Benchmark Queries:
○ 3 factors: Simplicity, Wall-time,

Scalability
● Traditional DB:

○ Design can be complex, more
targeted, tradeoff for use-cases

● Spark:
○ More general - store everything,

achieve performance via parallelism
and clever storage formats

○ Trade-off is fast queries suffer
scheduling overhead, lack of index,
etc.

Wall: 33min

Wall: ~7 seconds

Ex Test Query: Select all galaxies with an H-alpha flux value
> 5 in more than 20% of their good spaxels

Postres

Spark

Case Study: SDSS MaNGA

● Spark not always faster
○ Overheads in managing sessions could make it

quite a bit slower for short queries
○ Can’t beat highly optimized DB that fit in memory of

single node

● Mixed mode (size dependent)
○ SQL for some use-cases, e.g. object metadata
○ Spark for others, e.g. custom codes, ML, complex

queries
○ General idea behind MS BDC

PSQL Spark

Q1 <5s <5s

Q2 33min <10s

Q3 3min <10s

Case Study: ZTF local/AWS

● Obtained parquet files from our UW colleagues (thanks!)
● > 1B objects, light curves in up-to 3 bands of varying number of epochs
● ~3TB compressed
● Compare local Spark cluster with AWS EMR+S3

Case Study: ZTF local/AWS

● Task: Clustering on lightcurve + object features. Unsupervised analog to [1]
○ Involves SQL for subselect, cleaning
○ Custom codes for feature extraction (difficult/impossible with standard SQL)
○ Heavy computations for light-curve period folding (esp when considering 1B+ objects)

[1] Van Rostel, Jan et al. “The ZTF Source Classification Project I. Methods and Infrastructure”

Case Study: ZTF local/AWS

● Local vs Remote
○ Local:

■ Recycled ~10 year old hardware for experiments
■ Limited scalability, takes some effort to add hardware
■ Critically, we already have an operational data center

○ Cloud (AWS):
■ State-of-the art hardware
■ Essentially unlimited scaling
■ Costly (in your face - but easy to understand)

AWS EMR:
● 40 x c5a.4xlarge [16 core/ 32GB]
● Wall time: ~16 hrs
● Cost: ~$360 (ec2 spot/emr/s3)

Feature generation: Local:
● 14 x [24 core / 48 GB]
● Wall time: ~100 hrs
● Cost: ~$15 *

* assuming 14 nodes at $10,000 each with 5 year lifetime, constant use. Ele: 1kw @
$0.09/hr per node No management/running costs considered. Large grain of salt required!

Case Study: ZTF local/AWS

● Features close to > typical node memory
● Interested in DBSCAN over Kmeans, but more difficult to distribute - not

included in Spark ML library
● Even after PCA-based dimensionality reduction, single-thread neighbor

search expensive (tree generation)
○ Long haul feature generation on Spark
○ Transfer ~40GB of PCA-features to SciServer compute
○ DBSCAN using scikit-learn - exceeds jobs timeouts

Conclusions

● SciServer does data-proximate big-data - Adding Spark can turn big -> BIG
● Standard SQL databases have some limitations

○ Often designed with specific use-case focus
○ Arbitrary functions against data non-trivial
○ Search and retrieve / summary

● With Spark
○ Less structured - throw cores at the problem
○ Highly scalable - throw cores at the problem
○ Save some cores with clever storage formats (like parquet)
○ Generality - run SQL and arbitrary code - don’t have to know all the questions
○ Use as system for scaling data (re-)processing/ETL

Conclusions

● Cloud
○ Costs - on demand
○ Scalability - more control over bringing down walltime

● Local
○ Can be cost-effective - older hardware mixed hardware
○ Difficult to scale

Conclusions

● Interfaces
○ So far, our experiments were a mix of SQL and Python code from Jupyter notebooks
○ SQL from CasJobs-like interface might be desirable

■ Overhead in scheduling spark sessions
■ Experimenting with Trino (forked from PrestoDB)

