Roman SNe Calibration Requirements

Susana Deustua, NIST
Roman Science Requirements: Type Ia SNe

Stage IV Dark Energy Experiment (DETF definition)
FOM should be 10x larger than Stage II

Roman Science Requirements Document:
Dark Energy Figure of Merit (FoM):

\[\text{FoM}_{SNe} \geq \frac{\text{FoM}_{SNe,Ref}}{2} = 325 \]

where the reference FoMSNe,Ref \sim 650
Roman Science Requirements: Type Ia SNe

Most significant systematic effects are Count Rate Non-linearities & Zeropoints (Flux calibration)

Effect of systematic uncertainties on the SNe FoM. From Hounsell+ 2018
Roman Calibration

• Per-component transmission knowledge should be available
• No pre-flight, end-to-end, full aperture calibration
• No in-flight built-in end-to-end monitoring
=> Rely on standard stars monitoring & Relative Calibration System
WFI Calibration Activities

Detector Calibrations
- Darks for Imaging
- Darks for Spectroscopy
- Pixel-level Flat Field
- Subpixel response
- Read noise / correlation
- Classic non-linearity
- CRNL: Lamp-on/lamp-off
- CRNL: Direct Illumination
- Unstable Pixels
- Persistence
- Burn-in
- Gain
- Inter-pixel Capacitance (Linear)
- Inter-pixel Non-linearities

Imaging Calibration
- Photometric Uniformity (large-scale)
- Photometric Uniformity (small-scale)
- Bandpass Uniformity
- Temporal stability (touchstone)
- Spectrophotometric Response (absolute flux)
- Cross-Survey Calibration
- Geometric Distortion
- Absolute Astrometry
- PSF calibration

Spectroscopic Calibration
- Pointing Reconstruction
- Wavelength Zeropoint
- Dispersion Solution
- Trace Calibration
- Flux Calibration (position)
- Flux Calibration (wavelength)
- Spectrophotometric Stability
- Spectral PSF
Count rate non-linearity (CRNL) requirements

• 10% of the SN FoM is allocated to CRNL

=> knowledge: 0.3%
 • for count rates from 0.3 e/sec to $\sim 10^4$ e/sec i.e. 26 mag to 15 mag

=> If uncorrected, CRNL affects luminosity distance determination through
 • filter zeropoints & absolute color

=> Laboratory & in-flight measurements show that CRNL exhibits spatial variation over a detector

See also Greg Mosby’s presentation
In Flight: RCS: Relative Calibration System

lamp-on/lamp-off illumination
- provides stable pedestal flux above sky
- capability to set pedestal flux between a few to \(\sim 1000 \) e-/sec.
- measurements are made for source-affected pixels
- provides *averages per detector* for range of flux levels
- established analysis method
- flight heritage (HST/NICMOS)

direct flat field illumination
- illuminates focal plane at range of flux/wavelengths between 0.3 & 10000 e-/sec/pix
- precise knowledge of the ratio of any two flux levels
- enables local measurement of CRNL
 - e.g. superpixels of \(N \times N \) pixels
 - determination of spatial structure in CRNL

The RCS is the WFI on-board calibration hardware, designed to illuminate the focal plane with LEDs at six wavelengths approximately matching the filter set (see Josh Schlieder’s slides)
Impact of LOLO and DI on Figure of Merit

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Figure of Merit Relative to Old Baseline of LOLO (F) + Direct (RZYjHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No RCS</td>
<td></td>
</tr>
<tr>
<td>LOLO Only (WF)</td>
<td></td>
</tr>
<tr>
<td>LOLO Only (RZYjHF)</td>
<td></td>
</tr>
<tr>
<td>LOLO Only (F)</td>
<td></td>
</tr>
<tr>
<td>LOLO (WF) + Direct (Y)</td>
<td></td>
</tr>
<tr>
<td>LOLO (WF) + Direct (ZJ)</td>
<td></td>
</tr>
<tr>
<td>LOLO (WF) + Direct (RZYjHF)</td>
<td></td>
</tr>
<tr>
<td>LOLO (WF) + Direct (RZJ)</td>
<td></td>
</tr>
<tr>
<td>LOLO (RZYjHF) + Direct (RZY)</td>
<td></td>
</tr>
<tr>
<td>LOLO (RY) + Direct (ZY)</td>
<td></td>
</tr>
<tr>
<td>LOLO (FY) + Direct (Y)</td>
<td></td>
</tr>
<tr>
<td>LOLO (FJ) + Direct (ZJ)</td>
<td></td>
</tr>
<tr>
<td>LOLO (FJ) + Direct (Y)</td>
<td></td>
</tr>
<tr>
<td>LOLO (FY) + Direct (RZYjHF)</td>
<td></td>
</tr>
<tr>
<td>LOLO (F) + Direct (RZJ)</td>
<td></td>
</tr>
<tr>
<td>Direct-Only (ZY)</td>
<td></td>
</tr>
<tr>
<td>Direct-Only (ZJ)</td>
<td></td>
</tr>
<tr>
<td>Direct-Only (Y)</td>
<td></td>
</tr>
<tr>
<td>Direct-Only (RZYjHF)</td>
<td></td>
</tr>
</tbody>
</table>

- Simple fisher-matrix code (e.g., Astier+ 2011 A&A, 525A, 7A) for range of RCS scenarios.
- Considered a) DI only, b) LOLO only, c) both
- The dashed vertical line represents a 10% margin on the baseline FoM.
- When using LOLO with the W146 filter, we assume we can also use the LEDs for the Z087, Y106, J129, H158, and F184 filters.
- LOLO in W146 less effective than direct-illumination at these wavelengths, as it does not extend to as low count rates as DI (from Deustua+ 2021, RNAAS)
SNe Calibration Requirements: Photometric accuracy

From Science Requirements:
- 0.3% between 0.3 and 25000 e-/sec in a bandpass (11 mags)
- 0.5% for the ratio of any two bands

Essential:
- **SI system** calibration scale; not just a consistent system => cross calibration
- **Slope:** flux scale vs wavelength
- **Absolute Color:** broadband band-to-band zeropoint

Nice to have: knowledge of the absolute flux scale
Improving Spectrophotometric Calibration

• More standards with physics-based calibrations (NIST traceable): Vega, Sirius, Sun and CALSPEC stars to ~2 microns
 • NISTStars - Vis + NIR (NIST & STSCI, Deustua et al)
 • SCALA - Visible (LBNL & UH Aldering et al)
 • StarDICE - Visible (IN2P3, Herzenberg)

• More spectral types: DAWD, cooler, redder and fainter WD, A, G stars (matched to CALSPEC scale)
 • Gordon et al, Bohlin et al, Krick et al (to 8 microns)
 • Tremblay et al, Maiz Apellaniz et al, Suzuki et al (to 1.7 microns)

• More faint (~19 mag) WD standards on CALSPEC system
 • Calamida et al, Narayan et al.
 • Appleton & Deustua et al, Bohlin et al
end