Improving SI-traceablity of Flux Standards for NGRST

Greg Aldering Berkeley Lab Nov 18, 2021

Flux Calibration on International System of Units

Needed to get to physical parameters - \mathcal{L} , \mathcal{T} Driver for SN Ia Cosmology FoM wfirs

SNe Ia with WFIRST and LSST could be the most powerful cosmology probe, if flux calibration is good to mmag

Stellar Atmospheres Model Method

Reliance only on Models is Risky

The CALSPEC WD models just changed! (Bohlin++ 2020)

NGRST λ range

Physical Calibration Method

5

Model vs Physical Calibration

- Model Atmospheres of Stars:
 - Compute model spectra of specific stars, i.e., CALSPEC DA white dwarfs
 - Pros:
 - The reference sources look like regular science targets to instrument
 - Cons:
 - Worry about model limitations metallicity, convection, turbulence, etc.
 - Galactic extinction need to be in Local ISM Bubble or else be limited by dust knowledge
 - External uncertainty model essential, but hard to assess
- Physical Calibration:
 - Calibrate a telescope+instrument on SI system, then transfer to any star
 - Pros:
 - No modeling or dust extinction; applicable to any source
 - Multiple experiments provide external uncertainty
 - Cons:
 - Project light and star/SN light have differences in path through the telescope

Physical Calibration from SNIFS+SCALA

Differences may come from SCALA+SNIFS, CALSPEC, or, more likely, both.

Already competitive with previous physical calibration

Supported in part by NGRST SIT and NIST PMG

SCALA as measured before upgrades

NIST STARS

FEL Calibration	0.35
Transfer FEL calibration to Transfer Spectrometer	0.01
FEL to Transfer Spectrometer Distance	0.10
Transfer Spectrometer Linearity	0.20
Transfer Spectrometer Reproducibility	0.20
Transfer Calibration from Transfer Spectrometer to	0.01
light source	
Transfer Spectrometer to light source Distance	0.10
Transfer light source Calibration to telescope	0.30
Light Source to Telescope distance	0.20
Measurement of star	0.10
Horizontal Extinction Between Light Source and	0.20
Telescope	
Uncertainty Without Line of Sight Extinction	0.63
Line of Sight Extinction to Star	1.00?
Total Uncertainty	1.18?

Current: to 1 micron To be sited on Paranal, wavelength range to 2.5 microns

Supported in part by NGRST SIT and NIST

Calibration on SI system w/ accurate uncertainties is essential for NGRST

Alternative to stellar atmospheres models needed

Better physical calibration is now within reach!

Cosmology w/ SNe Ia FoM strongly depends on Flux Calibration on a Physical System

WFIRST SN Ia DE constraints

SNe Ia with WFIRST and LSST could be the most powerful cosmology probe, if calibration is good to mmag