Roman Infrared Nearby Galaxies Survey

Ben Williams (University of Washington) PI: Nearby Galaxies GA Science Investigation Team Once known as WINGS

Near-Field is Inherently Wide-Field

Near-Field is Inherently Wide-Field

Resolution improves as D Limiting depth improves as ~D² Required survey area degrades as D⁻²

Roman's Nearby Potential

Roman's Nearby Potential

Stellar Halos with Roman

The Story is in the Stars

Stellar Halo Structures

Number, luminosity, shape of streams — Types, timing and orbits of galaxies accreted. Disrupted streams — Small-scale dark matter halos.

414 Hubble Pointings

414 Hubble Pointings

2 Roman Pointings

HST 7 POINTINGS

Roman Infrared Nearby Galaxies Survey

Blair et al. 2014

HST 7 POINTINGS

Near-field science overview figure; Akeson et al. 2019

Roman Imaging of FIRE Simulations

Halo populations by Robyn Sanderson (see Sanderson et al. 2020)

Roman Infrared Nearby Galaxies Survey

November 15, 2021

Simulating Halo Images

Backgrouind: CANDELSbased catalogs

Stars: Galaxia catalogs of simulations

Blue = Z087Red = H158Roman Infrared Nearby

Simulating Halo Images

Backgrouind: CANDELSbased catalogs

Stars: Galaxia catalogs of simulations

Blue = Z087 Red = H158Roman Infrared Nearby

Simulating Halo Images

Backgrouind: CANDELSbased catalogs

Stars: Galaxia catalogs of simulations

Blue = Z087Red = H158Roman Infrared Nearby

Projects and Lead Co-ls

PI: Williams (U. Wash.)		Deputy PI: Dalcanton (U. Wash
Postdoc: Adrien Thob (U.Wash.)		And many more collaborators!
	Photometry	Dolphin (Raytheon)
	Stellar Halos	Bell (Mich.), Johnston (Columbia), Bullock (UCI). Mandel (Columbia)
	Dwarf Satellites	Sand (UA), Bullock (Irvine)
	Small Scale Dark Matter	Walker (CMU), Kervick (CMU), Johnston (Columbia)
	Globular Clusters	Seth (Utah)
	Simulating Color Magnitude Diagrams	Weisz (Berkeley), Sanderson(UPenn)
	Dust & ISM	Gordon (STScI)
	Stellar Evolution	Girardi (INAF), Boyer (STScI)

NANCY GRACE ROMAN SPACE TELESCOPE

Providing Tools for the Community

- wingspipe: event-based pipeline software package (A.Thob, <u>https://github.com/benw1/WINGS</u>)
- DOLPHOT: Roman subpackage for crowded-field photometry (A. Dolphin, <u>http://americano.dolphinsim.com/dolphot/</u>)
- PARSEC: Stellar evolution models in Roman bands (L. Girardi, <u>http://stev.oapd.inaf.it/cgi-bin/cmd</u>)
- walter: Predicting star counts for Roman observations (L. Lancaster, <u>https://github.com/ltlancas/walter</u>)
- SCUDS: detecting and classifying halo substructure from catalogs (D. Hendel, <u>https://github.com/davidhendel/scuds</u>)
- HSS: Finding streams in catalogs (S. Pearson, <u>https://github.com/sapearson/ HSS</u>)
- STIPS: Generating simulated science-quality Roman images from input catalogs (STScI, <u>https://github.com/spacetelescope/STScI-STIPS</u>)