The Roman Crowded Field Photometry Pipeline

Adrien Thob, Benjamin Williams
University of Washington
Roman Science Team Community Briefing 2021
Motivation & purpose

• Roman capability to push source separation in nearby galaxies at an unprecedented level and beyond ground observation capability

• Production and analysis of synthetic Roman crowded field images using photometry routines

• Verification of suitability between both observatory design specifications and team science program objectives
Building blocks

• **Space Telescope Image Product Simulator (STIPS) for Roman**
 - Simulate single detector WFI image from catalogue
 - Catalogue contains both stars & background galaxies
 - Calculates PSF from WebbPSF-WFIRST
 - Includes noise and residual errors

• **DOLPHOT**
 - Stellar photometry PSF-fitting package
 - Roman module currently in development
Workflow diagram

1. Input photometry catalogue
2. Split catalogue per detector & filter
3. Run STIPS on splits
4. Prepare images and DOLPHOT parameters
5. Run DOLPHOT
6. Analyse resulting catalogue
Workflow diagram

- First tests of STIPS used simple grid of identical stars
 ⇒ catalogue size α 10,000
- Render of M31 press release image with PHAT photometry
 ⇒ catalogue size α 100 million
- Currently aiming at a render of an M81 analogue from the suite of simulations FIRE
 ⇒ catalogue size α 200 million (+CANDELS background)
Workflow diagram

- First tests of STIPS used simple grid of identical stars
 ⇒ catalogue size α 10,000

- Render of M31 press release image with PHAT photometry
 ⇒ catalogue size α 100 million

- Currently aiming at a render of an M81 analogue from the suite of simulations FIRE
 ⇒ catalogue size α 200 million (+CANDELS background)
Workflow diagram

1. Input photometry catalogue
2. Split catalogue per detector & filter
3. Run STIPS on splits
4. Prepare images and DOLPHOT parameters
5. Run DOLPHOT
6. Analyse resulting catalogue
Workflow diagram

- Input photometry catalogue
- Split catalogue per detector & filter
- Run STIPS on splits

- STIPS to simulate images per:
 - 18 detectors
 - 6 filter bands (R062, Z087, Y106, J129, H158, F184)

- Workflow must operate each image in parallel

- Dedicated module to track and manage workflow
 - All workflow records kept in centralized SQL database
Workflow manager

SQL database ORM schema
Workflow manager

SQL database ORM schema
Workflow manager
Workflow manager

SQL database ORM schema
Scheduling automation

- Workflow ORM manager wingspipe automates scheduling
 ⇒ Automates parallelized scheduling across nodes with commonly used jobs schedulers (PBS, Slurm)

- Tracking allows resuming of pipeline without loss of progress
 ⇒ Useful if the pipeline breaks for unforeseen reason

- Currently developing a web interface to view pipeline status
Take-home points

- Roman Crowded-Field Photometry pipeline’s infrastructure is ready & available on GitHub (https://github.com/benw1/WINGS)

- Infrastructure relies on wingspipe, a new dedicated workflow management ORM software tracking & automating pipeline scheduling

- Now optimizing STIPS and DOLPHOT to efficiently run a full 18 detector simulated observation