Deep Realistic Extragalactic Model (DREaM): Simulating a Roman Ultra-Deep Field

Nicole Drakos (ndrakos@ucsc.edu)
NSERC Postdoctoral Fellow
University of California, Santa Cruz
THE EPOCH OF REIONIZATION

- Big Bang
- Dark Ages
- Recombination
- Reionization
- Galaxies form
- Present day

Image Credit: Brant Robertson
Adapted from Robertson et al. 2010
REIONIZATION QUESTIONS

1. **HOW? — What were the sources of reionization?**
 Galaxies, stars, AGN, decaying particles, primordial black holes…

2. **WHEN? — What was the timeline of reionization?**
 Happened sometime between \(z=6 \) and \(z=9 \).

3. **WHERE? — What was the topology of reionization?**
 How “patchy” was reionization? Did high or low density regions ionize first?
To answer questions about reionization, we need surveys that are:

1. **DEEP** enough to image faint high-redshift galaxies and

2. **WIDE** enough to see the environments around galaxies

Roman has an enormous field of view, making it ideal for **WIDE** and **DEEP** galaxy surveys!
THE WIDE FIELD OF VIEW

Roman Camera Field of View
CV ~ 12%

Reionized Bubbles
15 h⁻¹ Mpc

Roman Camera Field of View

HST WFC3 or JWST NIRCAM
CV ~ 33%

CANDELS-Wide GOODS-S+ERS
CV ~ 20%

85 h⁻¹ comoving Mpc @ z~7

Cosmic Variance

Image Credit: Brant Robertson
Adapted from Robertson et al. 2010
SYNTHETIC GALAXY CATALOGS

Synthetic catalogs make predictions of what a survey will detect.

PREPARATION - Design survey, predict science returns, develop pipelines

ANALYSIS - Understand systematics, completeness corrections
DEEP REALISTIC EXTRAGALACTIC MODEL (DREaM)

arXiv:2110.10703

Nicole Drakos (University of California, Santa Cruz)
Bruno Villasenor (University of California, Santa Cruz)
Brant Robertson (University of California, Santa Cruz)
Ryan Hausen (University of California, Santa Cruz),
Mark Dickinson (National Optical Astronomical Observatory)
Harry Ferguson (Space Telescope Science Institute)
Steven Furlanetto (University of California, Los Angeles)
Jenny Greene (Princeton University)
Piero Madau (University of California, Santa Cruz)
Alice Shapley (University of California, Los Angeles)
Dan Stark (University of Arizona)
Risa Wechsler (Stanford University)

GOALS:

Provide community with a synthetic data set for wide, deep galaxy surveys
Quantify the science returns of a 1 deg\(^2\) Roman Ultra-Deep Field
Galaxy Catalog at the Epoch of Reionization

A 1 deg2 UDF would be $\sim 300x$ larger than HUDF and 20x than JADES (80x larger than deep part)

- Large census of galaxies
- Probe the environment around individual galaxies

Also: galaxy-halo connection, stellar mass functions, galaxy scaling relations, emergence of quiescent galaxies, and more...
Abundance Matching

Light Cone
METHODS

Morphologies

Spectra Modeling

\[\log_{10}(M_{\text{bol}}/M_\odot) = 8.46 \]

\[\log_{10}(M_{\text{bol}}/M_\odot) = 11.02 \]
DREaM GALAXY CATALOG
www.nicoledrakos.com/dream

CATALOG CONTAINS

- Positions (redshift, RA, DEC)
- Galaxy Masses and SFRs
- Morphologies
- Roman and JWST photometry
- Spectral modelling parameters
- Dark matter halo properties
- And More…

CATALOG REPRODUCES

- Halo Mass Function
- Stellar Mass Function
- Luminosity Functions
- Galaxy Clustering
- Cosmic Star Formation Rate Density
- Fundamental Metallicity Relation
- And More…
<table>
<thead>
<tr>
<th></th>
<th>6<z<8</th>
<th>8<z<10</th>
<th>z>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>All HST + ground</td>
<td>~10^3</td>
<td>~150</td>
<td>~5</td>
</tr>
<tr>
<td>JADES</td>
<td>8 x 10^3</td>
<td>2 x 10^3</td>
<td>300</td>
</tr>
<tr>
<td>ROMAN UDF</td>
<td>10^5</td>
<td>2 x 10^4</td>
<td>2 x 10^3</td>
</tr>
</tbody>
</table>
Are there enough faint galaxies to reionize the universe?

Uncertainties dominated by limited volume/cosmic variance
A Roman UDF will be able to constrain the UVLF to 1% on faint end!

- $z \sim 10$
- $M_{UV} < -17$
SUMMARY OF FINDINGS

What will a 1 deg2 Roman UDF measure?

Number Counts
- $>10^4$ galaxies during the Epoch of Reionization ($z>7$)
- Furthest quiescent galaxy to date?
- More than 10^3 galaxies above redshift 10

UV Luminosity Function
- Within 1% on faint end
- $M_{UV}<-17$ at redshift 10
APPLICATIONS

Synthetic Catalog Has Many Uses

Predict Science Returns

• Reionization
• Galaxy—halo connection
• Galaxy evolution
• Stellar mass functions
• Scaling relations

Quantify Systematics

• Source blending
• Line confusion
• SED fitting
• WFI systematics
• Processing issues/low-surface brightness
• Secondary analysis/photo-z studies
SUMMARY

• **Epoch of Reionization** is the next frontier in galaxy surveys
 - Is there enough radiation from galaxies to ionize the universe?
 - What is the environment around faint, early galaxies?

• *Roman* can help answer these questions!

• **Synthetic galaxy catalogs** such as the Deep Realistic Extragalactic Model (*DREaM*) galaxy catalogs are important to design, interpret and prepare for these future studies.
Thank you!