Exoplanet Microlensing
Final Report
2nd AFTA SDT Meeting

Scott Gaudi & Matthew Penny
The Ohio State University
Outline for Section.

- Brief recap of science justification.
- Brief recap of requirements.
- Revised yields.
 - Focus on relative yields, i.e., the effect of the changes in instrumentation on yield.
 - Absolute yields are uncertain for various reasons.
 - Free-floating planets.
- Parameter estimation.
 - Estimate the fraction of events for which mass measurements should be possible.
- Habitable planets?
 - Large differences in predictions from various models.
 - *Kepler* hints at a relatively low frequency (<10%)?
Requirements.

• Monitor hundreds of millions of bulge stars continuously on a time scale of ~10 minutes.
 – Event rate $\sim 10^{-5}$/year/star.
 – Detection probability ~ 0.1-1%.
 – Shortest features are ~ 30 minutes.

• Relative photometry of a few %.
 – Deviations are few – 10%.

• Main sequence source stars for smallest planets.
• Resolve background stars for primary mass determinations.
Yields.

- Use the MaBµLS simulator (Besancon models).
- Known to underestimate the microlensing event rate, but not by how much.
- Scale to clump giant optical depths – conservative.
- Focus on relative yields, more robust.
- Event rates might be higher, but will require additional observations to confirm.
Yields: NRO vs DRM1 vs DMR2.

<table>
<thead>
<tr>
<th>M/M_{Earth}</th>
<th>DRM1</th>
<th>DRM2</th>
<th>NRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>30</td>
<td>29</td>
<td>58</td>
</tr>
<tr>
<td>1</td>
<td>239</td>
<td>279</td>
<td>336</td>
</tr>
<tr>
<td>10</td>
<td>794</td>
<td>918</td>
<td>1060</td>
</tr>
<tr>
<td>100</td>
<td>630</td>
<td>733</td>
<td>781</td>
</tr>
<tr>
<td>1000</td>
<td>367</td>
<td>442</td>
<td>453</td>
</tr>
<tr>
<td>10,000</td>
<td>160</td>
<td>199</td>
<td>180</td>
</tr>
<tr>
<td>Total</td>
<td>2221</td>
<td>2600</td>
<td>2868</td>
</tr>
</tbody>
</table>

- Total time = 432 days, 0.29 deg^2 FOV.
- Yield \sim \text{propto} FOV
- Yield \sim \text{propto} (\text{photon rate})^\alpha, \text{with } \alpha \sim 0.3 \text{ to } 1.2
- DRM2 versus DRM1:
 - DMR2 FOV 1.55 larger, photon rate 0.72 of DRM1
 - Assumes same total observing time for direct comparison of hardware.
- DRM1 versus NRO
 - DMR1 FOV = 1.14 x NRO FOV, photon rate 2.28 times DMR1
 - Assumes same total observing time.
Exoplanet Demographics with AFTA-WFIRST.

- With Kepler, AFTA-WIFRST will “complete the census” of planets.
- Some sensitivity to analogs of all Solar System except Mercury.
- Some sensitivity to massive, “outer” habitable zone (Mars-like orbits).
- Free-floating planets down to ~Mars mass.
- AFTA-WFIRST estimated yields:
 - 2900 bound planets (0.5-30 AU).
 - 400 < 3xEarth, 1500 < 30xEarth
 - 45 free-floating Earths.
 - Average of 30% higher yields per unit time relative to DRM1.
 - 2x higher yields for Mars-mass planets.

Points are simulated planets by Ida & Lin.
Parameter Estimation.

• Characterizing lens stars:
 – Measure angular source size.
 – Resolve unrelated stars.
 – Measure proper motion or centroid shifts.
 – Measure parallax.

• Improved angular resolution allows better characterization of the host stars.

• Don’t know by how much!

• Use crude estimates to determine ability to measure mass of individual host stars.
Habitable Planets?

- Shallow, brief dips.
 - Depth of features scales strongly with separation near Einstein ring.
 - Depth also very sensitive to source size.
- Very difficult to predict the yields, near sensitivity ‘cliff’.
 - Precise source size distribution.
 - Precise luminosity function.
 - Precise noise distribution.
 - Precise Einstein ring radii distribution.
 - Precise mass/luminosity relation.
In June 2009, NASA formed the *Exoplanet Exploration Program Analysis Group* (ExoPAG), responsible for soliciting and coordinating community input into the development and execution of NASA’s Exoplanet Exploration Program (ExEP). The ExoPAG serves as a community-based, interdisciplinary forum for analysis in support of activity prioritization and for future exploration.

- Articulate the key scientific drivers for exoplanet research.
- Evaluate the expected capabilities of potential ExEP missions for achieving the science goals of the program.
- Evaluate ExEP goals, objectives, investigations, and required measurements on the basis of the widest possible community outreach.
- Articulate focus areas for needed mission technologies.
- Identify related activities that enhance the ExEP mission portfolio such as ground-based observing, theory and modeling programs, and community engagement.
ExoPAG 7.

- Met January 5+6.
- Scheduled talk from David Spergel on AFTA, but…
- Brief summary of AFTA SDT activities to date.
- Group discussion:
 - “Does the community endorse putting a coronagraph on AFTA/WFIRST, even if it means forgoing some future technology development opportunities and/or other small-scale direct imaging missions?”
- Unanimous yes!
Exoplanets + exoplanets.

- WFIRST-C has *two* exoplanet science goals.
 - Demographics of planets.
 - Discovery and characterization of disks and gas giants around nearby stars.
- *Both* will advance exoplanet science.
- We should join forces!