

WFIRST CGI Milestone 9 Dynamic Contrast Demonstration Status Update

January 27, 2017

WFIRST Coronagraph Testbed and Modeling Teams

Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

- Summary of the last Milestone 9 review
- Summary of progress since the last MS9 review
- **Dynamic test results: HLC and SPC modes**
- Static contrast improvements: HLC and SPC modes
- **Dynamic results discussion**
- Conclusion and future work
- **Backup slides**

• At the Milestone 9 review on 11/8/2016, the following results were presented:

- Static OMC contrast reaching 9x10⁻⁹ with a recently reconfigured testbed pseudo-star and OTA front end, that reduced unmodulated light
- Dynamic test results showing LOWFS/C performance in controlling pointing and focus errors (HLC) during testing done with the earlier front end, at a worse static contrast level
- These tests were done separately; dynamic testing with LOWFS/C had not been carried out yet with raw contrast better than 10⁻⁸

• TAC MS9 report comments:

Jet Propulsion Laboratory

California Institute of Technology

- "it must be noted these quoted contrasts for Milestone #9 were obtained through static testing in the HCIT. Modeling of the expected degradation in a dynamic environment was also performed, but the contrast measurements were not performed simultaneously with the dynamic jitter."
- "The TAC encourages the team to continue their efforts with both the SPC and the HLC in the dynamic testing environment to enable Milestone #9 to be truly achieved for either, or both, methods."

• Scope of this review:

- New results showing "both the SPC and the HLC [performance] in a dynamic testing environment"
- New results showing improved static SPC and HLC contrast performance

Summary of Testbed Results

• Static tests

Jet Propulsion Laboratory

California Institute of Technology

- Further updates to the testbed pseudo-star (replaced COTS pinhole with a clean, JPLmade pinhole) greatly reduced unmodulated starlight residual.
- Improved wavefront control algorithm approach (regularization schedule) reduced modulated starlight residual
- In combination, these resulted in a significant improvement of static OMC contrast levels:
 - 1.6x10⁻⁹ for HLC static: full 360% 3-9 λ /D annulus, 10% broadband centered at 550nm
 - 4.3x10⁻⁹ for SPC static: 2x65% 2.8-8.8 λ/D bowtie, 10% broadband centered at 550nm

• Dynamic tests

- Dynamic testing with the new front end and lower static contrast is in progress, injecting and correcting dominant on-orbit disturbances: Pointing drift/jitter and focus drift
- Recent results show dynamic OMC (both HLC and SPC mode) contrast better than 1x10⁻⁸ in presence of WFIRST flight-like dynamic disturbances and LOWFS/C correction
- Improved LOWFS/C robustness and performance
 - LOWFS reconstructor built from the testbed sensor response of FSM and DM
 - Better DM actuator gain calibration to reduce the DM low order WFE correction residual error
 - Sensing "pupil shear modes" reduces LOWFS sensor error from testbed non-common path drift (SPC mode)
 - Multiple ringers in feedforward control to increased the notch filter bandwidth (~0.25 Hz)
 - Feedforward to suppress the "uncooperative" frequency at ~120 Hz

SPC+LOWFS/C Dynamic Test Result

- SPC dynamic test demonstrating coronagraph contrast <1x10⁻⁸ with simulated on-orbit pointing and focus disturbances and LOWFS/C sensing & correction.
- <u>Coronagraph Mode</u>: Shaped Pupil Coronagraph
 - Contrast recorded with a 10% bandwidth filter centered at 550 nm.
- <u>Line-of-sight Error Injected</u>: 14 mas rms drift + CBE line of sight jitter at 600 rpm wheel speed (72 harmonic tones)
 - LoS error injected by OTA Simulator's Jitter Mirror (JM)
 - LoS error corrected by OMC's Fast Steering Mirror (FSM) with both feedback and feedforward loops
- <u>Low Order WFE Injected</u>: 2 nm p-v focus disturbance (4x worse than expected WFIRST thermal drift)
 - Focus injected by modified OTA Simulator's source stage
 - Sinusoidal focus disturbance with period of 750 sec. In each section of test OTA put out ~2 disturbances cycles.
 - Focus corrected by one of OMC's deformable mirrors (DM).

HLC+LOWFS/C Dynamic Test Result

9

HLC + LOWFS/C Dynamic Test: Movie

- HLC dynamic test demonstrating coronagraph contrast <1x10⁻⁸ with simulated on-orbit pointing and focus disturbances and LOWFS/C sensing & correction.
- <u>Coronagraph Mode</u>: Hybrid Lyot Coronagraph
 - Contrast recorded with a 10% bandwidth filter centered at 550 nm.
 - At the start of test HLC has ~0.2nm focus bias, which made the contrast perturbation non-symmetric
- <u>Line-of-sight Error Injected</u>: 14 mas rms drift + CBE line of sight jitter at 600 rpm wheel speed (72 harmonic tones)
 - LoS error injected by OTA Simulator's Jitter Mirror (JM)
 - LoS error corrected by OMC's Fast Steering Mirror (FSM) with both feedback and feedforward loops
- <u>Low Order WFE Injected</u>: 1 nm p-v focus disturbance (2x worse than expected WFIRST thermal drift)
 - Focus injected by modified OTA Simulator's source stage
 - Sinusoidal focus disturbance with period of 750 sec. In each section of test OTA put out ~3 disturbances cycles.
 - Focus corrected by one of OMC's deformable mirrors (DM).

Jet Propulsion Laboratory

California Institute of Technology

- OMC testbed static contrast has significantly improved for both HLC and SPC modes
- Latest contrast results (10% bandwidth at 550 nm): SPC = 4.3x10⁻⁹ and HLC = 1.6x10⁻⁹
 - Better wavefront control algorithm by alternating the EFC control aggressiveness (regularization).
 - Replaced the commercial metallic, laser-burnt pinhole with a pinhole made at JPL using e-beam lithography, etched in a thin silicon wafer.
 - Reduced testbed LoS jitter by turning off the strain gauges on jitter mirror and fast steering mirror (HLC)

Dynamic Test Results Discussion

Milestone 9 Results:

- Demonstrated WFIRST Occulting Mask Coronagraph <10⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a simulated dynamic environment.
 - Both SPC and HLC modes meet this threshold
- After testbed algorithm and hardware improvements guided by modeling, the testbed has reached the best levels of static contrast ever demonstrated with an obscured aperture.

Future testbed work will focus on increasing fidelity end-to-end demonstrations on path toward TRL6:

- Broadband wavefront control using IFS data cubes
- Starlight suppression with low photon flux
- Dark hole convergence rate consistent with model predictions
- Speckle stability with LOWFS/C for post-processing
- Continue CGI+LOWFS/C testing with disturbances from the updated WFIRST jitter and thermal observatory models