

Design Reference Mission Overview

Jeffrey Kruk

December 23, 2020

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
• SPACE TELESCOPE SCIENCE INSTITUTE • IPAC • EUROPEAN SPACE AGENCY •
• JAPAN AEROSPACE EXPLORATION AGENCY • LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE •
• CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

- What the DRM is:
 - A required product at major mission reviews
 - An existence proof that mission objectives can be met in required lifetime
 - A tool for exercising the ground system & flight software
 - Does proposal system support all the observing modes?
 - Can planning/scheduling tools build the timeline & command loads?
 - Will command loads execute on the spacecraft & instrument simulators?
 - Does observing efficiency in simulator match expectations?
 - Does telemetry support data processing of all observing modes?
 - Are pipeline products properly ingested into the archive?

- What the DRM is:
 - A required product at major mission reviews
 - An existence proof that mission objectives can be met in required lifetime
 - A tool for exercising the ground system
 - Does proposal system support all the observing modes?
 - Can planning/scheduling tools build the timeline & command loads?
 - Will command loads execute on the spacecraft & instrument simulators?
 - Does observing efficiency in simulator match expectations?
 - Does telemetry support data processing of all observing modes?
 - Are pipeline products properly ingested into the archive?
- What the DRM is not:
 - The actual observing plan

- Cumulative point-source depth in wide-area surveys:
- High Latitude Survey **Wide 2000 deg²** Deep 20 deg² Imagining in 4 filters (5 σ) AB ~26.5 AB ~28.2 3.10-17 - Grism (6.5 σ line flux 1.8 μ 0.2"r_{eff}) 8·10⁻¹⁷ SN la Survey (5-day cadence) Wide Deep AB ~29.5 5.3 deg² Imaging in 4 filters (5σ) AB ~28.6 16 deg² _ Prism (10 σ continuum) AB ~25.3 3.3 deg² AB ~26.1 1.1 deg² There are many possible SN survey implementations!

Microlensing:

- Monitor 2+ deg^{2,} 15 minute cadence over 72-days, S/N=100 @ AB=21.4 per visit
- Exoplanet detections by microlensing, other time-domain astronomy,
- Precision astrometry (tens of micro-arcsec)

High Latitude Survey

- No cadence requirements per se
- Spectroscopic survey will want observations of any given field at roughly opposite dispersion directions
 - Have only one grism, so schedule revisits separated by ~6 months
- Want survey regions to be contiguous, or at minimum not split into many sections
 - Could imagine a region in South and another in North perhaps

Supernova Survey

- Want continuous coverage of a particular field for ~ 2 years
- Visits at 5-day cadence
- Microlensing Survey
 - Want continuous coverage of a particular field for entire visibility period
 - 60-72 days, Spring and Fall
 - Visits at 15-minute cadence
 - Longest possible total time baseline
 - accurate proper motions and maximizing separation of stars in lensing events

- Likely layout over 5-year mission
 - Microlensing seasons Spring and Fall of first year and last year, 2 more somewhere in between
 - Supernova campaign somewhere in years 2-4 to avoid conflicting with microlensing campaigns
 - High Latitude Survey can be distributed throughout
 - GO observations can be distributed throughout

(from Mission PDR)

OBSERVING PROGRAM LAYOUT

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
MISSION YEAR 1 (2026)	HLS	EMS	EMS	HLS	EC	GO PA/C	HLS	EMS	EMS	HLS	GO	HLS
	GO			GO	HLS		EC			EC	EC	GO
				00	111.5		EC					PA/C
						SNS	SNS	SNS	SNS	SNS	SNS	SNS
MISSION YEAR 2 (2027)	EC		EMS	HLS	HLS	5105	5115	HLS	GO	GO	HLS	
	GO	EMS		EC	GO	HLS	GO					HLS
	go			EC	PA/C							PA/C
MISSION YEAR 3 (2028)	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS
	HLS	GO	HLS	GO	GO	HLS	HLS	GO	HLS	GO	GO	GO
				HLS	PA/C HLS					HLS	HLS	PA/C
MISSION YEAR 4 (2029)	SNS	SNS	SNS	SNS	SNS		GO	EMS	EMS	HLS	GO	
	HLS	HLS	GO	GO	HLS	HLS						HLS
				HLS	GO	-						
						PA/C	HLS				HLS	PA/C
MISSION YEAR 5 (2030)		HLS	EMS	HLS	HLS	GO	HLS	EMS	EMS			
	HLS									GO	uu c	GO
	60	GO EMS		GO	GO		HLS	EIVIS		HLS	HLS	
					00	PA/C				1123		PA/C

LEGEND

HLS	High Latitude Survey (Imaging & Spectroscopy)			
SNS	Supernova Survey (Imaging & Spectroscopy)			
EMS	Exoplanet Microlensing Survey			
GO	General Observer Program			
EC	Exoplanet Coronagraphy Program			
PA/C	Payload Alignment/Calibration			

- 1-month Notional Observing Program activities are represented in each month as a percentage of time dedicated to that activity Durations range from 1 week (25%) to 4 weeks (100%) ٠ Routine mission overheads (e.g. large slews between observing programs,
 - momentum unloads, station-keeping) are interleaved with the observing program activities

Notional layout demonstrates capability to meet science objectives within scheduling constraints

25%

25%

25%

25%

Summary

- The layout shown on the previous slide shows the qualitative features of a sample schedule.
- In real life programs will be distributed in a more fine-grained fashion.
- Present best estimates of observing efficiency and overheads show that all programs can meet their requirements in a 5-year mission with 86 days margin.
- Will the actual observing program look like the present DRM?
 - No. But at least some parts are likely to be similar.