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Abstract (optional): Over the past decade, research in resolved stellar populations has made
great strides in exploring the nature of dark matter, in unraveling the star formation, chemical
enrichment, and dynamical histories of the Milky Way and nearby galaxies, and in probing
fundamental physics from general relativity to the structure of stars. Large surveys have been
particularly important to the biggest of these discoveries. In the coming decade, current and
planned surveys will push these research areas still further through a large variety of discovery
spaces, giving us unprecedented views into the low surface brightness Universe, the high surface
brightness Universe, the 3D motions of stars, the time domain, and the chemical abundances of
stellar populations. These discovery spaces will be opened by a diverse range of facilities,
including the continuing Gaia mission, imaging machines like LSST and WFIRST, massively
multiplexed spectroscopic platforms like DESI, Subaru-PFS, and MSE, and telescopes with high
sensitivity and spatial resolution like JWST, the ELTs, and LUVOIR. We do not know which of
these facilities will prove most critical for resolved stellar populations research in the next decade.
We can predict, however, that their chance of success will be maximized by granting use of the
data to broad communities, that many scientific discoveries will draw on a combination of data
from them, and that advances in computing will enable increasingly sophisticated analyses of the
large and complex datasets that they will produce. We recommend that Astro2020 1)
acknowledge the critical role that data archives will play for stellar populations and other science
in the next decade, 2) recognize the opportunity that advances in computing will bring for survey
data analysis, and 3) consider investments in Science Platform technology to bring these
opportunities to fruition.
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1 Guiding Questions
As recognized in several Astro2020 Science White Papers (e.g., Bechtol et al., 2019; Simon et al.,
2019; Weisz & Boylan-Kolchin, 2019; Dey & Najita et al., 2019), some of the most important
questions to be addressed by surveys of resolved stellar populations in the coming decade are:

• What is the nature of dark matter?
Resolved stellar populations trace the density and distribution of dark matter over orders of
magnitude in halo mass, with faint dwarf galaxies and microlenses being particularly
important probes (e.g., Drlica-Wagner et al., 2019).

• What are the formation histories of nearby galaxies?
The star formation, chemical enrichment, and dynamical histories of galaxies are encoded
in their stars, and in the Milky Way and nearby galaxies may be retrieved by photometric,
spectroscopic, and astrometric measurements of resolved stellar populations (e.g. Weisz &
Boylan-Kolchin, 2019).

• How can resolved stellar populations serve as probes of fundamental astrophysics?
Precise measurements of resolved stellar populations probe the physics of stellar interiors
(Appourchaux et al., 2012), general relativity and black hole physics (e.g., Ghez et al.,
1998), and the progenitor stars of explosions (e.g., Li et al. 2011; Smartt 2015).

Exploiting the surveys that address these questions will crucially depend on the availability and
development of not only data archives but also “Science Platforms” that include high-level
analysis tools, as we will argue below.

2 Where will the answers come from?

2.1 The low surface brightness Universe
Starting with SDSS, surveys have excelled at illuminating the low surface brightness Universe.
The SDSS Field of Streams (Belokurov et al., 2006) sparked profound interest in using the halo to
understand the accretion history of the Galaxy, while the faint dwarf galaxies found in SDSS
(e.g., Willman et al., 2005) both exposed our severely incomplete knowledge of the low-mass
galaxy population and engendered the Missing Satellites problem. The Dark Energy Survey
yielded a treasure trove of 17 dwarf satellites (Dark Energy Survey Collaboration et al., 2016) and
11 stellar streams (Shipp et al., 2018), and introduced the possibility that the Magellanic Clouds
represent an infalling group with a dwarf satellite system of its own (Sales et al., 2017). The
GD-1 stellar stream, when isolated by a combination of Pan-STARRS photometry and Gaia DR2
proper motions, shows the clearest evidence yet of a gap from a potential perturbation from a dark
matter subhalo (Price-Whelan & Bonaca, 2018). All of these discoveries relied on data archives to
selectively filter large catalogs and isolate populations of interest.
In the coming decade, LSST should reveal 100+ dwarf galaxies in the Galactic halo (Newton
et al., 2018) and, by analogy, a similar number of new streams. Spectroscopic surveys with DESI,
4MOST, WEAVE, Subaru-PFS, or MSE will give context of chemistry and dynamics through
massive datasets, while ELTs can probe their dark matter profiles through dynamics of their cores.
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While any one of these future facilities will have enormous impact on our knowledge of the low
surface brightness Universe, the last decade indicates that the greatest discovery and
understanding will come from a combination of measurements and datasets and the application of
innovative computational techniques to them, areas where data archives will play a critical role.

2.2 The moving Universe
The Gaia mission has produced spectacular results on the structure of our Galaxy (e.g., Helmi
et al., 2018). While many of these were to be expected from a survey containing parallaxes and
proper motions of a billion stars, others came as complete surprises. Among the totally
unexpected results was the discovery of a clear spiral pattern in phase space in the Galactic disk
from Gaia DR2 (Antoja et al., 2018), demonstrating that the disk is not in complete dynamical
equilibrium. Indeed, the pattern is likely the result of the recent passage of a perturbing mass,
perhaps that of the Sagittarius dwarf galaxy (Binney & Schönrich, 2018), raising the possibility of
future discoveries of gravitational perturbations in the disk. Another surprising result was the
discovery of a gap in the main sequence luminosity function in the Gaia DR2 100 pc parallax
sample (Jao et al., 2018), which (MacDonald & Gizis, 2018) explain as caused by 3He mixing in
the convective envelope of stars in a narrow range of mass on the main sequence. The result
demonstrates how precise measurements of large samples can yield new insight into fundamental
astrophysics. The Gaia Archive (https://gea.esac.esa.int/archive/) made all of these discoveries
possible through its catalog query and data services.
While Gaia will remain the premier astrometric mission for many years to come, by the end of the
next decade LSST will provide parallaxes out to ∼300 pc for stars too faint for Gaia, yielding an
inventory of all brown dwarfs and white dwarfs in the solar neighborhood; proper motions from
LSST will probe the dynamics of the halo out to ∼100 kpc with main sequence stars (LSST
Science Collaborations, 2009). The LSST Science Platform will be crucial for identifying and
analyzing these objects from the 37 billion objects and 7 trillion individual detections in the final
catalog (https://www.lsst.org/scientists/keynumbers).

2.3 The high surface brightness Universe
The components of galaxies that contain the bulk of the stellar mass – nuclei, bulges, disks, and
main bodies – are typically high in surface brightness and thus severely crowded. Surveys with
HST have played a crucial role in deciphering the star formation and chemical enrichment
histories of galaxies in the Local Volume (e.g. ANGST; Dalcanton et al., 2009), including that of
M31 (PHAT; Dalcanton et al., 2012). The availability of these datasets through the MAST
Archive have made them broadly used and highly cited. In the Galactic center, adaptive
optics-corrected instruments on large ground-based telescopes have permitted the observation of
complete orbits of stars around the Milky Way’s central black hole (e.g., Hees et al., 2017), and
the detection of a flare from a star near the black hole, whose time delays are a direct probe of
general relativity (Gravity Collaboration et al., 2018). Because the timescales of the stellar orbits
span decades, data archives have proved crucial in supporting these discoveries.
In the next decade, surveys with e.g. JWST and the ELTs will make deconstruction of the star
formation histories of galaxies across the Hubble sequence possible (e.g., Olsen et al., 2003). The
high resolution of AO-corrected ELTs will permit the detection of faint stars close to the central
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black hole, bringing tests of general relativity into a new regime (Do et al., 2017). Data archives
should support these observations by making the data broadly accessible, exposing the analysis
software to the public, and linking the observations over time.

2.4 Time-resolved Surveys
Surveys targeting time-variable phenomena are providing powerful perspectives on resolved
stellar populations. For example, Boubert et al. (2019) used RR Lyrae from Gaia DR2, 2MASS,
CRTS, and Pan-STARRS to associate the Virgo Stellar Stream with the Magellanic Stream.
Extragalactic time-domain studies in resolved stellar populations inform us about the late-stages
of stellar evolution and SN progenitor stars (e.g., luminous blue variables; Smith & Tombleson,
2015), and supply temporally- and spatially-resolved SN light echoes which provide a unique and
valuable view of historical Galactic explosions (e.g., Rest et al. 2008, and see also Astro2020
paper Graham et al. 2019). All of these studies relied on data archive catalog and image services.
The LSST’s final catalogs will contain ∼135 million variable stars (LSST Science Collaborations,
2009), a much larger sample of fainter objects with longer duration light curves (up to 10 years)
in multiple filters (ugrizy) compared to past surveys. LSST will recover 50% of the RR Lyrae
stars at 600 kpc, adding great detail to our map of the Milky Way, its halo streams, and dwarf
satellites (Oluseyi et al., 2012). Beyond the Milky Way, Cepheid variables will provide distances
to more SN Ia host galaxies, improving both cosmological analyses (e.g., Hoffmann et al., 2016)
and our physical understanding of the explosions (e.g., Foley et al., 2018). The future wide-field
time-domain datasets will be large and continuously evolving. Ingesting and processing 10
million LSST alerts per night will require dedicated community resources in order to extract
features from light curves and/or cross-match to archival catalogs for historical context, and
promptly prioritize objects for follow-up (e.g., spectroscopy).

2.5 Spectroscopic Surveys
The line-of-sight velocities and chemical abundances from stellar spectra provide crucial insights
to the study of the star formation, chemical enrichment, and dynamical histories of the Milky Way
and nearby galaxies. The concept that the unique chemical signatures of clusters of stars should
permit us to unscramble the early formation history of the Galaxy (Freeman & Bland-Hawthorn,
2002) provided motivation for the sample of ∼1 million stars collected by several surveys (SDSS
I-IV, APOGEE, LAMOST, GALAH, RAVE). These surveys have demonstrated the ability of
chemical tagging to pick out known objects purely in abundance space (e.g., Hogg et al., 2016;
Kos et al., 2018), and have led to the development of significant new abundance measurement
techniques (e.g. The Cannon; The Payne; Ness et al., 2015; Ting et al., 2018) and theoretical
frameworks for interpreting the surveys (e.g., Sanderson et al., 2017).
The spectroscopic surveys of the next decade (SDSS-V, 4MOST, DESI, WEAVE, and
Subaru-PFS) will yield samples at least 10−100× larger than the current ones. In combination
with the Gaia mission, these samples will construct a multi-dimensional map of the Milky Way
(Dey & Najita et al., 2019), allowing for detailed exploration of the dark matter distribution,
Galactic substructure, and rare objects like the most metal-poor stars. Mining these complex
datasets will be greatly served by the ability of data archives and Science Platforms to access,
analyze, visualize, and model the data.
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3 Recommendations for Archives and Science Platforms
Surveys from the facilities and missions planned or proposed for the coming decade will open
tremendous opportunities for using resolved stellar populations to answer fundamental
astrophysical questions. It is critical that the data from these future surveys be made broadly
accessible and reusable. The 20-year SDSS survey has resulted in 7700 refereed papers
containing SDSS data, the large majority from authors not part of the SDSS Collaboration
(https://www.sdss.org/science/). Papers based on archival use of HST data outpace those based on
GO programs (376 vs. 341 in 2017; HST Library Staff 2018). In one year, Gaia DR2 has resulted
in ∼300 refereed publications, ∼500 if arXiv preprints are included.
The tremendous productivity of archival data use clearly shows that data archives have a critical
role to play for resolved stellar populations and all other science in the next decade, as archives
make data broadly accessible and lower the barrier for entry into astronomy research. We
recommend that Astro2020 acknowledge this critical role of data archives. It also indicates
that there is potential for still greater exploitation of archival data. Several institutions are
developing Science Platforms to expand the range of services for large survey datasets, including
running complex workflows on servers close to the where the data reside; some currently
operating examples of Science Platforms for astronomy are SDSS SkyServer
(http://skyserver.sdss.org), SciServer (http://www.sciserver.org), NOAO Data Lab
(https://datalab.noao.edu), and MAST Labs (https://mast-labs.stsci.io), soon to be joined by the
LSST Science Platform (https://ldm-542.lsst.io).
Based on the input of participants at the workshop “NOAO Community Needs for Science in the
2020s”, in the next decade Science Platforms should:

1. Serve the Pixels with built-in tools for pixel-level alignment, analysis, and modeling of
images from a variety of multi-wavelength heterogeneous imaging datasets, including
pixel-level data access for spectra.

2. Co-locate the Catalogs of astrometry, photometry, spectroscopic, and time-domain data,
provide built-in tools for fast catalog coordinate cross-matching, and provide functionality
to make cross-matching codes and data products widely shareable.

3. Capture the Moment by providing access to public Alerts brokers for capturing time
variable phenomena, target observation manager (TOM) infrastructure for following up
high value events, and servers for the associated processing and storage. ANTARES
(https://antares.noao.edu) is an example of a currently operating public Alert broker, while
AEON (http://ast.noao.edu/data/aeon) is TOM infrastructure under development.

4. Curate and Preserve existing data sets indefinitely, along with a platform that contains
embedded query, analysis, and visualization tools tailored to the data.

5. Model the Data with algorithms for global parameter fits across all archived data, via e.g.
platform-embedded Deep Learning, including mixed-origin sources and heterogeneous
surveys (imaging, catalogs, and spectra).

We recommend that Astro2020 recognize Science Platforms as the natural evolution of
today’s archives for the next decade of large surveys. They will let users bring code to the data
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Figure 1: An overview of services provided by the NOAO Data Lab (https://datalab.noao.edu), a
prototype Science Platform. The figure at bottom right is from a Jupyter Notebook that demon-
strates the automated detection of low surface brightness dwarf galaxies in the Dark Energy Survey.
Science Platforms aim to enable data discovery, visualization, and analysis close to significant data
volumes, provide a convenient way to share data and workflows with collaborators and the com-
munity, and make data and analysis software broadly available, useful, and reproducible.

for those cases where transferring the data is impractical. They will leverage new technological
developments from the fast-paced software industry to increase the scientific return of large
survey datasets. Perhaps most importantly, they will make the ability to explore and analyze large
datasets available to a broad community, such that the potential for discovery will be limited by
imagination rather than technical hurdles. We recommend that Astro2020 consider
investments in Science Platform development to allow them to evolve the way astronomical
research is performed in the next decade. Science platforms could be the “Google Office Suite”
for astronomical data analysis. Collectively, they would have all of the major survey catalogs,
images that cover most of the sky, millions of spectra, and a full-blown computing environment,
all at a user’s fingertips. Users could upload their own data and their own software and share
whatever they like with collaborators, and see what others do with their data as well. The
availability of archived data, combined with standardized formats and co-located analysis tools,
may also improve the scientific integrity of our work by making astronomical research more
easily reproducible. Such platforms could unleash innovation in resolved stellar populations and
other research as significant as that of new facilites.
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